911 research outputs found

    Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation

    Get PDF
    Approximate Bayesian computation has emerged as a standard computational tool when dealing with the increasingly common scenario of completely intractable likelihood functions in Bayesian inference. We show that many common Markov chain Monte Carlo kernels used to facilitate inference in this setting can fail to be variance bounding, and hence geometrically ergodic, which can have consequences for the reliability of estimates in practice. This phenomenon is typically independent of the choice of tolerance in the approximation. We then prove that a recently introduced Markov kernel in this setting can inherit variance bounding and geometric ergodicity from its intractable Metropolis--Hastings counterpart, under reasonably weak and manageable conditions. We show that the computational cost of this alternative kernel is bounded whenever the prior is proper, and present indicative results on an example where spectral gaps and asymptotic variances can be computed, as well as an example involving inference for a partially and discretely observed, time-homogeneous, pure jump Markov process. We also supply two general theorems, one of which provides a simple sufficient condition for lack of variance bounding for reversible kernels and the other provides a positive result concerning inheritance of variance bounding and geometric ergodicity for mixtures of reversible kernels.Comment: 26 pages, 10 figure

    Metropolis Sampling

    Full text link
    Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201

    Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance

    Get PDF
    We consider a Metropolis-Hastings method with proposal kernel N(x,hG1(x))\mathcal{N}(x,hG^{-1}(x)), where xx is the current state. After discussing specific cases from the literature, we analyse the ergodicity properties of the resulting Markov chains. In one dimension we find that suitable choice of G1(x)G^{-1}(x) can change the ergodicity properties compared to the Random Walk Metropolis case N(x,hΣ)\mathcal{N}(x,h\Sigma), either for the better or worse. In higher dimensions we use a specific example to show that judicious choice of G1(x)G^{-1}(x) can produce a chain which will converge at a geometric rate to its limiting distribution when probability concentrates on an ever narrower ridge as x|x| grows, something which is not true for the Random Walk Metropolis.Comment: 15 pages + appendices, 4 figure

    Adaptive Gibbs samplers

    Get PDF
    We consider various versions of adaptive Gibbs and Metropolis- within-Gibbs samplers, which update their selection probabilities (and perhaps also their proposal distributions) on the fly during a run, by learning as they go in an attempt to optimise the algorithm. We present a cautionary example of how even a simple-seeming adaptive Gibbs sampler may fail to converge. We then present various positive results guaranteeing convergence of adaptive Gibbs samplers under certain conditions

    Stability of Noisy Metropolis-Hastings

    Get PDF
    Pseudo-marginal Markov chain Monte Carlo methods for sampling from intractable distributions have gained recent interest and have been theoretically studied in considerable depth. Their main appeal is that they are exact, in the sense that they target marginally the correct invariant distribution. However, the pseudo-marginal Markov chain can exhibit poor mixing and slow convergence towards its target. As an alternative, a subtly different Markov chain can be simulated, where better mixing is possible but the exactness property is sacrificed. This is the noisy algorithm, initially conceptualised as Monte Carlo within Metropolis (MCWM), which has also been studied but to a lesser extent. The present article provides a further characterisation of the noisy algorithm, with a focus on fundamental stability properties like positive recurrence and geometric ergodicity. Sufficient conditions for inheriting geometric ergodicity from a standard Metropolis-Hastings chain are given, as well as convergence of the invariant distribution towards the true target distribution
    corecore