111 research outputs found

    Delay Constrained Throughput Analysis of a Correlated MIMO Wireless Channel

    Full text link
    The maximum traffic arrival rate at the network for a given delay guarantee (delay constrained throughput) has been well studied for wired channels. However, few results are available for wireless channels, especially when multiple antennas are employed at the transmitter and receiver. In this work, we analyze the network delay constrained throughput of a multiple input multiple output (MIMO) wireless channel with time-varying spatial correlation. The MIMO channel is modeled via its virtual representation, where the individual spatial paths between the antenna pairs are Gilbert-Elliot channels. The whole system is then described by a K-State Markov chain, where K depends upon the degree of freedom (DOF) of the channel. We prove that the DOF based modeling is indeed accurate. Furthermore, we study the impact of the delay requirements at the network layer, violation probability and the number of antennas on the throughput under different fading speeds and signal strength.Comment: Submitted to ICCCN 2011, 8 pages, 5 figure

    Studies on Trade-off Between Throughput and Reliability in Wireless Systems

    Get PDF
    In the first part of the thesis, we study the trade-off between the transmission reliability and data rate in high signal-to-noise ratio regime in ad-hoc wireless networks. Bandwidth allocation plays a significant role in this trade-off, since dividing bandwidth reduces the number of users on each band and consequently decreases the interference level, however it also decreases the data rate. Noting that the interference power is substantially influenced by the network density, this trade-off introduces a measure for appropriate bandwidth allocation among users considering the network density. The diversity-multiplexing trade-off is derived for a one-dimensional regular ad-hoc network. In the second part of the thesis, we study the performance of point-to-point and broadcast systems with partial channel state information at the transmitter in a time-varying environment. First, the capacity of time-varying channels with periodic feedback at the transmitter is evaluated. It is assumed that the channel state information is perfectly known at the receiver and is fed back to the transmitter at the regular time-intervals. The system capacity is investigated in two cases: i) finite state Markov channel, and ii) additive white Gaussian noise channel with time-correlated fading. In a multiuser scenario, we consider a downlink system in which a single-antenna base station communicates with single antenna users, over a time-correlated fading channel. It is assumed that channel state information is perfectly known at each receiver, while the rate of channel variations and the fading gain at the beginning of each frame are known to the transmitter. The asymptotic throughput of the scheduling that transmits to the user with the maximum signal to noise ratio is examined applying variable code rate and/or variable codeword length signaling. It is shown that by selecting a fixed codeword length for all users, the order of the maximum possible throughput (corresponding to quasi-static fading) is achieved

    Scheduling and Codeword Length Optimization in Time Varying Wireless Networks

    Full text link
    In this paper, a downlink scenario in which a single-antenna base station communicates with K single antenna users, over a time-correlated fading channel, is considered. It is assumed that channel state information is perfectly known at each receiver, while the statistical characteristics of the fading process and the fading gain at the beginning of each frame are known to the transmitter. By evaluating the random coding error exponent of the time-correlated fading channel, it is shown that there is an optimal codeword length which maximizes the throughput. The throughput of the conventional scheduling that transmits to the user with the maximum signal to noise ratio is examined using both fixed length codewords and variable length codewords. Although optimizing the codeword length improves the performance, it is shown that using the conventional scheduling, the gap between the achievable throughput and the maximum possible throughput of the system tends to infinity as K goes to infinity. A simple scheduling that considers both the signal to noise ratio and the channel time variation is proposed. It is shown that by using this scheduling, the gap between the achievable throughput and the maximum throughput of the system approaches zero

    Effects of Mobility on User Energy Consumption and Total Throughput in a Massive MIMO System

    Full text link
    Macroscopic mobility of wireless users is important to determine the performance and energy effciency of a wireless network, because of the temporal correlations it introduces in the consumed power and throughput. In this work we introduce a methodology that obtains the long time statistics of such metrics in a network. After describing the general approach, we present a specific example of the uplink channel of a mobile user in the vicinity of a massive MIMO base-station antenna array. To guarantee a fixed SINR and rate, the user inverts the path-loss channel power, while moving around in the cell. To calculate the long time distribution of the consumed energy of the user, we assume his movement follows a Brownian motion, and then map the problem to the solution of the minimum eigenvalue of a partial differential equation, which can be solved either analytically, or numerically very fast. We also treat the throughput of a single user. We then discuss the results and how they can be generalized if the mobility is assumed to be a Levy random walk. We also provide a roadmap to use this technique when one considers multiple users and base stations.Comment: Submitted to ITW 201

    Agile wireless transmission strategies

    Get PDF
    • …
    corecore