967 research outputs found

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)≤np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa

    Canonical Representatives of Morphic Permutations

    Get PDF
    An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over {0,…,q−1}\{0,\ldots,q-1\} as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on Words: 10th International Conference. arXiv admin note: text overlap with arXiv:1503.0618

    Permutation Complexity via Duality between Values and Orderings

    Full text link
    We study the permutation complexity of finite-state stationary stochastic processes based on a duality between values and orderings between values. First, we establish a duality between the set of all words of a fixed length and the set of all permutations of the same length. Second, on this basis, we give an elementary alternative proof of the equality between the permutation entropy rate and the entropy rate for a finite-state stationary stochastic processes first proved in [Amigo, J.M., Kennel, M. B., Kocarev, L., 2005. Physica D 210, 77-95]. Third, we show that further information on the relationship between the structure of values and the structure of orderings for finite-state stationary stochastic processes beyond the entropy rate can be obtained from the established duality. In particular, we prove that the permutation excess entropy is equal to the excess entropy, which is a measure of global correlation present in a stationary stochastic process, for finite-state stationary ergodic Markov processes.Comment: 26 page

    Disjointness properties for Cartesian products of weakly mixing systems

    Full text link
    For n≥1n\geq 1 we consider the class JP(nn) of dynamical systems whose every ergodic joining with a Cartesian product of kk weakly mixing automorphisms (k≥nk\geq n) can be represented as the independent extension of a joining of the system with only nn coordinate factors. For n≥2n\geq 2 we show that, whenever the maximal spectral type of a weakly mixing automorphism TT is singular with respect to the convolution of any nn continuous measures, i.e. TT has the so-called convolution singularity property of order nn, then TT belongs to JP(n−1n-1). To provide examples of such automorphisms, we exploit spectral simplicity on symmetric Fock spaces. This also allows us to show that for any n≥2n\geq 2 the class JP(nn) is essentially larger than JP(n−1n-1). Moreover, we show that all members of JP(nn) are disjoint from ergodic automorphisms generated by infinitely divisible stationary processes.Comment: 24 pages, corrected versio

    Extensive amenability and an application to interval exchanges

    Full text link
    Extensive amenability is a property of group actions which has recently been used as a tool to prove amenability of groups. We study this property and prove that it is preserved under a very general construction of semidirect products. As an application, we establish the amenability of all subgroups of the group IET of interval exchange transformations that have angular components of rational rank~≤2{\leq 2}. In addition, we obtain a reformulation of extensive amenability in terms of inverted orbits and use it to present a purely probabilistic proof that recurrent actions are extensively amenable. Finally, we study the triviality of the Poisson boundary for random walks on IET and show that there are subgroups G<IETG <IET admitting no finitely supported measure with trivial boundary.Comment: 28 page
    • …
    corecore