226 research outputs found

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    Efficient, concurrent Bayesian analysis of full waveform LaDAR data

    Get PDF
    Bayesian analysis of full waveform laser detection and ranging (LaDAR) signals using reversible jump Markov chain Monte Carlo (RJMCMC) algorithms have shown higher estimation accuracy, resolution and sensitivity to detect weak signatures for 3D surface profiling, and construct multiple layer images with varying number of surface returns. However, it is computational expensive. Although parallel computing has the potential to reduce both the processing time and the requirement for persistent memory storage, parallelizing the serial sampling procedure in RJMCMC is a significant challenge in both statistical and computing domains. While several strategies have been developed for Markov chain Monte Carlo (MCMC) parallelization, these are usually restricted to fixed dimensional parameter estimates, and not obviously applicable to RJMCMC for varying dimensional signal analysis. In the statistical domain, we propose an effective, concurrent RJMCMC algorithm, state space decomposition RJMCMC (SSD-RJMCMC), which divides the entire state space into groups and assign to each an independent RJMCMC chain with restricted variation of model dimensions. It intrinsically has a parallel structure, a form of model-level parallelization. Applying the convergence diagnostic, we can adaptively assess the convergence of the Markov chain on-the-fly and so dynamically terminate the chain generation. Evaluations on both synthetic and real data demonstrate that the concurrent chains have shorter convergence length and hence improved sampling efficiency. Parallel exploration of the candidate models, in conjunction with an error detection and correction scheme, improves the reliability of surface detection. By adaptively generating a complimentary MCMC sequence for the determined model, it enhances the accuracy for surface profiling. In the computing domain, we develop a data parallel SSD-RJMCMC (DP SSD-RJMCMCU) to achieve efficient parallel implementation on a distributed computer cluster. Adding data-level parallelization on top of the model-level parallelization, it formalizes a task queue and introduces an automatic scheduler for dynamic task allocation. These two strategies successfully diminish the load imbalance that occurred in SSD-RJMCMC. Thanks to the coarse granularity, the processors communicate at a very low frequency. The MPIbased implementation on a Beowulf cluster demonstrates that compared with RJMCMC, DP SSD-RJMCMCU has further reduced problem size and computation complexity. Therefore, it can achieve a super linear speedup if the number of data segments and processors are chosen wisely
    • …
    corecore