1,291 research outputs found

    Erasure Correction for Noisy Radio Networks

    Get PDF
    The radio network model is a well-studied model of wireless, multi-hop networks. However, radio networks make the strong assumption that messages are delivered deterministically. The recently introduced noisy radio network model relaxes this assumption by dropping messages independently at random. In this work we quantify the relative computational power of noisy radio networks and classic radio networks. In particular, given a non-adaptive protocol for a fixed radio network we show how to reliably simulate this protocol if noise is introduced with a multiplicative cost of poly(log Delta, log log n) rounds where n is the number nodes in the network and Delta is the max degree. Moreover, we demonstrate that, even if the simulated protocol is not non-adaptive, it can be simulated with a multiplicative O(Delta log ^2 Delta) cost in the number of rounds. Lastly, we argue that simulations with a multiplicative overhead of o(log Delta) are unlikely to exist by proving that an Omega(log Delta) multiplicative round overhead is necessary under certain natural assumptions

    Myths and Realities of Rateless Coding

    No full text
    Fixed-rate and rateless channel codes are generally treated separately in the related research literature and so, a novice in the field inevitably gets the impression that these channel codes are unrelated. By contrast, in this treatise, we endeavor to further develop a link between the traditional fixed-rate codes and the recently developed rateless codes by delving into their underlying attributes. This joint treatment is beneficial for two principal reasons. First, it facilitates the task of researchers and practitioners, who might be familiar with fixed-rate codes and would like to jump-start their understanding of the recently developed concepts in the rateless reality. Second, it provides grounds for extending the use of the well-understood code design tools — originally contrived for fixed-rate codes — to the realm of rateless codes. Indeed, these versatile tools proved to be vital in the design of diverse fixed-rate-coded communications systems, and thus our hope is that they will further elucidate the associated performance ramifications of the rateless coded schemes

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol

    Enabling error-resilient internet broadcasting using motion compensated spatial partitioning and packet FEC for the dirac video codec

    Get PDF
    Video transmission over the wireless or wired network require protection from channel errors since compressed video bitstreams are very sensitive to transmission errors because of the use of predictive coding and variable length coding. In this paper, a simple, low complexity and patent free error-resilient coding is proposed. It is based upon the idea of using spatial partitioning on the motion compensated residual frame without employing the transform coefficient coding. The proposed scheme is intended for open source Dirac video codec in order to enable the codec to be used for Internet broadcasting. By partitioning the wavelet transform coefficients of the motion compensated residual frame into groups and independently processing each group using arithmetic coding and Forward Error Correction (FEC), robustness to transmission errors over the packet erasure wired network could be achieved. Using the Rate Compatibles Punctured Code (RCPC) and Turbo Code (TC) as the FEC, the proposed technique provides gracefully decreasing perceptual quality over packet loss rates up to 30%. The PSNR performance is much better when compared with the conventional data partitioning only methods. Simulation results show that the use of multiple partitioning of wavelet coefficient in Dirac can achieve up to 8 dB PSNR gain over its existing un-partitioned method

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel
    corecore