391 research outputs found

    Operator monotone functions and L\"owner functions of several variables

    Full text link
    We prove generalizations of L\"owner's results on matrix monotone functions to several variables. We give a characterization of when a function of dd variables is locally monotone on dd-tuples of commuting self-adjoint nn-by-nn matrices. We prove a generalization to several variables of Nevanlinna's theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth condition. We use this to characterize all rational functions of two variables that are operator monotone

    Quantum correlations and distinguishability of quantum states

    Full text link
    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.Comment: Review article, 103 pages, to appear in J. Math. Phys. 55 (special issue: non-equilibrium statistical mechanics, 2014

    Catalysis in Quantum Information Theory

    Full text link
    Catalysts open up new reaction pathways which can speed up chemical reactions while not consuming the catalyst. A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a (quantum) degree of freedom that remains unchanged throughout the process. In this review, we present a comprehensive overview of the concept of catalysis in quantum information science and discuss its applications in various physical contexts.Comment: Review paper; Comments and suggestions welcome

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    Coalgebraic modelling of timed processes

    Get PDF
    • …
    corecore