318 research outputs found

    MODEL-BASED DIAGNOSTICS OF SIMULTANEOUS TOOTH CRACKS IN SPUR GEARS

    Get PDF
    This study aims at developing a numerical model that could be used to simulate the effect of tooth cracks on the vibration behavior of spur gears. Gears are a key component that is widely used in various rotating equipment in order to transmit power and change speed. Any failure of this vital component may cause severe disturbance to production and incur heavy financial losses. The tooth fatigue crack is amongst the most common causes of gear failure. Early detection of tooth cracks is crucial for effective condition-based monitoring and decision making. The scope of this work was widened to include the influence of multiple simultaneous tooth cracks on the time and frequency domain responses at various locations and with different severity levels. As cracks significantly alter the gear mesh stiffness, a finite element analysis was performed to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom nonlinear lumped parameter model of a one-stage gearbox was developed to simulate the vibration response of faulty spur gears with the consideration of inter-tooth friction. Four different multiple crack scenarios were proposed and studied. The performances of various statistical fault detection indicators were investigated. The vibration simulation results of the gearbox obtained using MATLAB were verified with those stated in the published research articles. It was observed that as the severity of a single crack increased, the values of the time-domain statistical indicators increased, with different rates. However, the number of cracks had an adverse effect on the values of all the performance indicators, except the RMS indicator. The number and amplitude of the sidebands in the frequency spectrum were also utilized to detect the severity of the faults in each scenario. It was observed that, in the case of consecutive tooth cracks, the number of spectrum peaks and the number of cracks were well consistent in the frequency range of 4 to 5 kHz. The main finding of this study was that the peak spectral amplitude is the most sensitive indicator to the number and severity of cracks

    Modeling and dynamic analysis of spiral bevel gear coupled system of intermediate and tail gearboxes in a helicopter.

    Get PDF
    The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, the laminated membrane coupling and effects of several important parameters, including the unbalance value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s dynamic characteristics were discussed. The results showed that the influences of laminated membrane coupling and transmission error amplitude on the coupled system’s vibration response were prominent, which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to diminish while the axis orbit became larger. The research provides theoretical support for the design of the helicopter tail transmission system

    Advanced Rotorcraft Transmission (ART) program

    Get PDF
    Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of 165K,perunit,andanaveragetransmissiondirectoperatingcostsavingsof33percent,or165K, per unit, and an average transmission direct operating cost savings of 33 percent, or 24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized

    Advances of Italian Machine Design

    Get PDF
    This 2028 Special Issue presents recent developments and achievements in the field of Mechanism and Machine Science coming from the Italian community with international collaborations and ranging from theoretical contributions to experimental and practical applications. It contains selected contributions that were accepted for presentation at the Second International Conference of IFToMM Italy, IFIT2018, that has been held in Cassino on 29 and 30 November 2018. This IFIT conference is the second event of a series that was established in 2016 by IFToMM Italy in Vicenza. IFIT was established to bring together researchers, industry professionals and students, from the Italian and the international community in an intimate, collegial and stimulating environment

    Tribo-dynamic analysis of hypoid gears in automotive differentials

    Get PDF
    Torsional vibrations in differentials of Rear Wheel Drive vehicles are of major importance for the automotive industry. Hypoid transmissions, forming the motion transfer mechanism from the driveshaft to the wheels, suffer from severe vibration issues. The latter are attributed to improper mesh between the mating gear flanks due to misalignments, variation of contact load and shifting of the effective mesh position. For certain operating conditions, the gear pair exhibits high amplitude motions accompanied with separation of the mating surfaces. Ultimately, single or even double-sided vibro-impact phenomena evolve, which have been related to noise generation. This thesis attempts to address these issues by effectively analysing the dynamic behaviour of a hypoid gear pair under torsional motion. The case study considered is focused on a commercial light truck. The major difference of the employed mathematical model to prior formulations is the usage of an alternative expression for the dynamic transmission error so that the variation of contact radii and transmission error can be accounted for. This approach combined to a correlation of the resistive torque in terms of the angular velocity of the differential enables the achievement of steady state, stable periodic solutions. The dynamic complexity of systems with gears necessitates the identification of the various response regimes. A solution continuation method (software AUTO) is employed to determine the stable/unstable branches over the operating range of the differential. The ensuing parametric studies convey the importance of the main system parameters on the dynamic behaviour of the transmission yielding crucial design guidelines. A tribo-dynamic investigation aims at expanding the dynamic model from pure dry conditions to a more integrated elastohydrodynamic (EHL) approach. Analytical and extrapolated solutions are applied for the derivation of the film thickness magnitude based on the kinematic and loading characteristics of the dynamic model. The temperature rise is governed mainly by conduction due to the thin lubricant films. The generated friction is also computed as a function of the viscous shear and asperity interactions. The effective lubricant viscosity is greatly affected by the pressure increase due to the resonant behaviour of the contact load. The final part of this work is involved with a feasibility study concerning the application of Nonlinear Energy Sinks (NES) as vibration absorbers, exploiting their ability for broadband frequency interaction. Response regimes associated with effective energy absorption are identified and encouraging results are obtained, showing the potential of the method

    Thermal behavior spiral bevel gears

    Get PDF
    An experimental and analytical study of the thermal behavior of spiral bevel gears is presented. Experimental data were taken using thermocoupled test hardware and an infrared microscope. Many operational parameters were varied to investigate their effects on the thermal behavior. The data taken were also used to validate the boundary conditions applied to the analytical model. A finite element-based solution sequence was developed. The three-dimensional model was developed based on the manufacturing process for these gears. Contact between the meshing gears was found using tooth contact analysis to describe the location, curvatures, orientations, and surface velocities. This information was then used in a three-dimensional Hertzian contact analysis to predict contact ellipse size and maximum pressure. From these results, an estimate of the heat flux magnitude and the location on the finite element model was made. The finite element model used time-averaged boundary conditions to permit the solution to attain steady state in a computationally efficient manner.Then time- and position-varying boundary conditions were applied to the model to analyze the cyclic heating and cooling due to the gears meshing and transferring heat to the surroundings, respectively. The model was run in this mode until the temperature behavior stabilized. The transient flash temperature on the surface was therefore described. The analysis can be used to predict the overall expected thermal behavior of spiral bevel gears. The experimental and analytical results were compared for this study and also with a limited number of other studies. The experimental and analytical results attained in the current study were basically within 10% of each other for the cases compared. The experimental comparison was for bulk thermocouple locations and data taken with an infrared microscope. The results of a limited number of other studies were compared with those obtained herein and predicted the same basic behavior

    Design and Verification of a Compact Variable Stiffness Actuator With a Very Large Range of Stiffness

    Get PDF
    Current conventional robots require high stiffness joints to provide absolute positioning accuracy in free space which also causes problems when operating in constrained space. To circumvent these problems, Variable Stiffness Actuators (VSAs) can be used to vary their stiffness to suit the task being performed. A new VSA was designed to provide a very large range of stiffness in a compact size. The Arched Flexure VSA uses a cantilevered beam acting as the flexure with a variable point of contact. It allows the joint to have continuous variable stiffness, have zero stiffness for a small range of motion, and rapid stiffness change. Finite element analysis was used to evaluate flexture stiffness. The flexure geometry was optimized for two different objectives. In the first case, the flexture was optimized for maximum stiffness range. This optimization resulted in a stiffness ratio of 1200. In the second case, the flexture was optimized for both maximum stiffness range and constant relative sensitivity. This optimization resulted in a stiffness ratio of 100. A small proof-of-concept VSA actuator based on the constant relative sensitivity alternative was designed, built, and tested. The VSA provided a stiffness ratio of 55, a little more than half of that expected for the flexure alone. The VSA weighed 1.45 pounds and fits within a 4.5 inch by 2 inch by 5 inch volume. The VSA provides the anticipated free joint range for zero stiffness and provides 360 degrees of rotation. It changes from minimum to maximum stiffness in 0.12 seconds

    The study of the damping characteristics of a bimetallic structure for the design of silent high-performance gears

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.Includes bibliographical references (p. 93).by Jung Sin Yi.M.S

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    Get PDF
    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives
    • …
    corecore