33 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationAbstraction plays an important role in digital design, analysis, and verification, as it allows for the refinement of functions through different levels of conceptualization. This dissertation introduces a new method to compute a symbolic, canonical, word-level abstraction of the function implemented by a combinational logic circuit. This abstraction provides a representation of the function as a polynomial Z = F(A) over the Galois field F2k , expressed over the k-bit input to the circuit, A. This representation is easily utilized for formal verification (equivalence checking) of combinational circuits. The approach to abstraction is based upon concepts from commutative algebra and algebraic geometry, notably the Grobner basis theory. It is shown that the polynomial F(A) can be derived by computing a Grobner basis of the polynomials corresponding to the circuit, using a specific elimination term order based on the circuits topology. However, computing Grobner bases using elimination term orders is infeasible for large circuits. To overcome these limitations, this work introduces an efficient symbolic computation to derive the word-level polynomial. The presented algorithms exploit i) the structure of the circuit, ii) the properties of Grobner bases, iii) characteristics of Galois fields F2k , and iv) modern algorithms from symbolic computation. A custom abstraction tool is designed to efficiently implement the abstraction procedure. While the concept is applicable to any arbitrary combinational logic circuit, it is particularly powerful in verification and equivalence checking of hierarchical, custom designed and structurally dissimilar Galois field arithmetic circuits. In most applications, the field size and the datapath size k in the circuits is very large, up to 1024 bits. The proposed abstraction procedure can exploit the hierarchy of the given Galois field arithmetic circuits. Our experiments show that, using this approach, our tool can abstract and verify Galois field arithmetic circuits up to 1024 bits in size. Contemporary techniques fail to verify these types of circuits beyond 163 bits and cannot abstract a canonical representation beyond 32 bits

    Doctor of Philosophy

    Get PDF
    dissertationFormal verification of hardware designs has become an essential component of the overall system design flow. The designs are generally modeled as finite state machines, on which property and equivalence checking problems are solved for verification. Reachability analysis forms the core of these techniques. However, increasing size and complexity of the circuits causes the state explosion problem. Abstraction is the key to tackling the scalability challenges. This dissertation presents new techniques for word-level abstraction with applications in sequential design verification. By bundling together k bit-level state-variables into one word-level constraint expression, the state-space is construed as solutions (variety) to a set of polynomial constraints (ideal), modeled over the finite (Galois) field of 2^k elements. Subsequently, techniques from algebraic geometry -- notably, Groebner basis theory and technology -- are researched to perform reachability analysis and verification of sequential circuits. This approach adds a "word-level dimension" to state-space abstraction and verification to make the process more efficient. While algebraic geometry provides powerful abstraction and reasoning capabilities, the algorithms exhibit high computational complexity. In the dissertation, we show that by analyzing the constraints, it is possible to obtain more insights about the polynomial ideals, which can be exploited to overcome the complexity. Using our algorithm design and implementations, we demonstrate how to perform reachability analysis of finite-state machines purely at the word level. Using this concept, we perform scalable verification of sequential arithmetic circuits. As contemporary approaches make use of resolution proofs and unsatisfiable cores for state-space abstraction, we introduce the algebraic geometry analog of unsatisfiable cores, and present algorithms to extract and refine unsatisfiable cores of polynomial ideals. Experiments are performed to demonstrate the efficacy of our approaches

    Doctor of Philosophy

    Get PDF
    dissertationWith the spread of internet and mobile devices, transferring information safely and securely has become more important than ever. Finite fields have widespread applications in such domains, such as in cryptography, error correction codes, among many others. In most finite field applications, the field size - and therefore the bit-width of the operands - can be very large. The high complexity of arithmetic operations over such large fields requires circuits to be (semi-) custom designed. This raises the potential for errors/bugs in the implementation, which can be maliciously exploited and can compromise the security of such systems. Formal verification of finite field arithmetic circuits has therefore become an imperative. This dissertation targets the problem of formal verification of hardware implementations of combinational arithmetic circuits over finite fields of the type F2k . Two specific problems are addressed: i) verifying the correctness of a custom-designed arithmetic circuit implementation against a given word-level polynomial specification over F2k ; and ii) gate-level equivalence checking of two different arithmetic circuit implementations. This dissertation proposes polynomial abstractions over finite fields to model and represent the circuit constraints. Subsequently, decision procedures based on modern computer algebra techniques - notably, Gr¨obner bases-related theory and technology - are engineered to solve the verification problem efficiently. The arithmetic circuit is modeled as a polynomial system in the ring F2k [x1, x2, · · · , xd], and computer algebrabased results (Hilbert's Nullstellensatz) over finite fields are exploited for verification. Using our approach, experiments are performed on a variety of custom-designed finite field arithmetic benchmark circuits. The results are also compared against contemporary methods, based on SAT and SMT solvers, BDDs, and AIG-based methods. Our tools can verify the correctness of, and detect bugs in, up to 163-bit circuits in F2163 , whereas contemporary approaches are infeasible beyond 48-bit circuits

    The Groebner basis of the ideal of vanishing polynomials

    Get PDF
    We construct an explicit minimal strong Groebner basis of the ideal of vanishing polynomials in the polynomial ring over Z/m for m>=2. The proof is done in a purely combinatorial way. It is a remarkable fact that the constructed Groebner basis is independent of the monomial order and that the set of leading terms of the constructed Groebner basis is unique, up to multiplication by units. We also present a fast algorithm to compute reduced normal forms, and furthermore, we give a recursive algorithm for building a Groebner basis in Z/m[x_1,x_2,...,x_n] along the prime factorization of m. The obtained results are not only of mathematical interest but have immediate applications in formal verification of data paths for microelectronic systems-on-chip.Comment: 15 pages, 1 table, 2 algorithms (corrected version with new Prop. 3.8 and proof); Journal of Symbolic Computation 46 (2011

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    Polynomial Functions over Rings of Residue Classes of Integers

    Get PDF
    In this thesis we discuss how to find equivalent representations of polynomial functions over the ring of integers modulo a power of a prime. Specifically, we look for lower degree representations and representations with fewer variables for which important applications in electrical and computer engineering exist. We present several algorithms for finding these compact formulations
    corecore