12,909 research outputs found

    On the Singular Neumann Problem in Linear Elasticity

    Full text link
    The Neumann problem of linear elasticity is singular with a kernel formed by the rigid motions of the body. There are several tricks that are commonly used to obtain a non-singular linear system. However, they often cause reduced accuracy or lead to poor convergence of the iterative solvers. In this paper, different well-posed formulations of the problem are studied through discretization by the finite element method, and preconditioning strategies based on operator preconditioning are discussed. For each formulation we derive preconditioners that are independent of the discretization parameter. Preconditioners that are robust with respect to the first Lam\'e constant are constructed for the pure displacement formulations, while a preconditioner that is robust in both Lam\'e constants is constructed for the mixed formulation. It is shown that, for convergence in the first Sobolev norm, it is crucial to respect the orthogonality constraint derived from the continuous problem. Based on this observation a modification to the conjugate gradient method is proposed that achieves optimal error convergence of the computed solution

    Transverse electric scattering on inhomogeneous objects: spectrum of integral operator and preconditioning

    Full text link
    The domain integral equation method with its FFT-based matrix-vector products is a viable alternative to local methods in free-space scattering problems. However, it often suffers from the extremely slow convergence of iterative methods, especially in the transverse electric (TE) case with large or negative permittivity. We identify the nontrivial essential spectrum of the pertaining integral operator as partly responsible for this behavior, and the main reason why a normally efficient deflating preconditioner does not work. We solve this problem by applying an explicit multiplicative regularizing operator, which transforms the system to the form `identity plus compact', yet allows the resulting matrix-vector products to be carried out at the FFT speed. Such a regularized system is then further preconditioned by deflating an apparently stable set of eigenvalues with largest magnitudes, which results in a robust acceleration of the restarted GMRES under constraint memory conditions.Comment: 20 pages, 8 figure

    On sequential multiscale inversion and data assimilation

    Get PDF
    Multiscale approaches are very popular for example for solving partial differential equations and in many applied fields dealing with phenomena which take place on different levels of detail. The broad idea of a multiscale approach is to decompose your problem into different scales or levels and to use these decompositions either for constructing appropriate approximations or to solve smaller problems on each of these levels, leading to increased stability or increased efficiency. The idea of sequential multiscale is to first solve the problem in a large-scale subspace and then successively move to finer scale spaces. Our goal is to analyse the sequential multiscale approach applied to an inversion or state estimation problem. We work in a generic setup given by a Hilbert space environment. We work out the analysis both for an unregularized and a regularized sequential multiscale inversion. In general the sequential multiscale approach is not equivalent to a full solution, but we show that under appropriate assumptions we obtain convergence of an iterative sequential multiscale version of the method. For the regularized case we develop a strategy to appropriately adapt the regularization when an iterative approach is taken. We demonstrate the validity of the iterative sequential multiscale approach by testing the method on an integral equation as it appears for atmospheric temperature retrieval from infrared satellite radiances

    A framework for deflated and augmented Krylov subspace methods

    Get PDF
    We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) "removes" certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately. We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual (OR) and minimal residual (MR) methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated MINRES method. Numerical experiments illustrate properties of different variants of deflated MINRES analyzed in this paper.Comment: 24 pages, 3 figure

    On the equivalence of LIST and DIIS methods for convergence acceleration

    Get PDF
    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We here demonstrate the mathematical equivalence between the recently proposed family of LIST methods [J. Chem. Phys. 134, 241103 (2011); J. Chem. Theory Comput. 7, 3045 (2011)] with Pulay's DIIS [Chem. Phys. Lett. 73, 393 (1980)]. Our results also explain the differences in performance among the various LIST methods

    Numerical methods for computing Casimir interactions

    Full text link
    We review several different approaches for computing Casimir forces and related fluctuation-induced interactions between bodies of arbitrary shapes and materials. The relationships between this problem and well known computational techniques from classical electromagnetism are emphasized. We also review the basic principles of standard computational methods, categorizing them according to three criteria---choice of problem, basis, and solution technique---that can be used to classify proposals for the Casimir problem as well. In this way, mature classical methods can be exploited to model Casimir physics, with a few important modifications.Comment: 46 pages, 142 references, 5 figures. To appear in upcoming Lecture Notes in Physics book on Casimir Physic
    corecore