7,736 research outputs found

    Strongly Universal Reversible Gate Sets

    Full text link
    It is well-known that the Toffoli gate and the negation gate together yield a universal gate set, in the sense that every permutation of {0,1}n\{0,1\}^n can be implemented as a composition of these gates. Since every bit operation that does not use all of the bits performs an even permutation, we need to use at least one auxiliary bit to perform every permutation, and it is known that one bit is indeed enough. Without auxiliary bits, all even permutations can be implemented. We generalize these results to non-binary logic: If AA is a finite set of odd cardinality then a finite gate set can generate all permutations of AnA^n for all nn, without any auxiliary symbols. If the cardinality of AA is even then, by the same argument as above, only even permutations of AnA^n can be implemented for large nn, and we show that indeed all even permutations can be obtained from a finite universal gate set. We also consider the conservative case, that is, those permutations of AnA^n that preserve the weight of the input word. The weight is the vector that records how many times each symbol occurs in the word. It turns out that no finite conservative gate set can, for all nn, implement all conservative even permutations of AnA^n without auxiliary bits. But we provide a finite gate set that can implement all those conservative permutations that are even within each weight class of AnA^n.Comment: Submitted to Rev Comp 201

    Classifying Higher Rank Toeplitz Operators.

    Get PDF
    To a higher rank directed graph (Λ, d), in the sense of Kumjian and Pask, 2000, one can associate natural noncommutative analytic Toeplitz algebras, both weakly closed and norm closed. We introduce methods for the classification of these algebras in the case of single vertex graphs
    corecore