136 research outputs found

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Bounded Reachability for Temporal Logic over Constraint Systems

    Full text link
    We present CLTLB(D), an extension of PLTLB (PLTL with both past and future operators) augmented with atomic formulae built over a constraint system D. Even for decidable constraint systems, satisfiability and Model Checking problem of such logic can be undecidable. We introduce suitable restrictions and assumptions that are shown to make the satisfiability problem for the extended logic decidable. Moreover for a large class of constraint systems we propose an encoding that realize an effective decision procedure for the Bounded Reachability problem

    Revisiting Reachability in Timed Automata

    Full text link
    We revisit a fundamental result in real-time verification, namely that the binary reachability relation between configurations of a given timed automaton is definable in linear arithmetic over the integers and reals. In this paper we give a new and simpler proof of this result, building on the well-known reachability analysis of timed automata involving difference bound matrices. Using this new proof, we give an exponential-space procedure for model checking the reachability fragment of the logic parametric TCTL. Finally we show that the latter problem is NEXPTIME-hard

    Deciding Conditional Termination

    Full text link
    We address the problem of conditional termination, which is that of defining the set of initial configurations from which a given program always terminates. First we define the dual set, of initial configurations from which a non-terminating execution exists, as the greatest fixpoint of the function that maps a set of states into its pre-image with respect to the transition relation. This definition allows to compute the weakest non-termination precondition if at least one of the following holds: (i) the transition relation is deterministic, (ii) the descending Kleene sequence overapproximating the greatest fixpoint converges in finitely many steps, or (iii) the transition relation is well founded. We show that this is the case for two classes of relations, namely octagonal and finite monoid affine relations. Moreover, since the closed forms of these relations can be defined in Presburger arithmetic, we obtain the decidability of the termination problem for such loops.Comment: 61 pages, 6 figures, 2 table

    How hard is it to verify flat affine counter systems with the finite monoid property ?

    Full text link
    We study several decision problems for counter systems with guards defined by convex polyhedra and updates defined by affine transformations. In general, the reachability problem is undecidable for such systems. Decidability can be achieved by imposing two restrictions: (i) the control structure of the counter system is flat, meaning that nested loops are forbidden, and (ii) the set of matrix powers is finite, for any affine update matrix in the system. We provide tight complexity bounds for several decision problems of such systems, by proving that reachability and model checking for Past Linear Temporal Logic are complete for the second level of the polynomial hierarchy Σ2P\Sigma^P_2, while model checking for First Order Logic is PSPACE-complete

    Model-Checking Counting Temporal Logics on Flat Structures

    Get PDF
    We study several extensions of linear-time and computation-tree temporal logics with quantifiers that allow for counting how often certain properties hold. For most of these extensions, the model-checking problem is undecidable, but we show that decidability can be recovered by considering flat Kripke structures where each state belongs to at most one simple loop. Most decision procedures are based on results on (flat) counter systems where counters are used to implement the evaluation of counting operators
    corecore