28 research outputs found

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Designing hybridization: alternative education strategies for fostering innovation in communication design for the territory

    Get PDF
    Within the broad context of design studies, Communication Design for the Territory stands as a hybrid discipline constantly interfacing with other fields of knowledge. It assumes the territorial theme as its specific dimension, aiming to generate communication systems capable of reading the stratifications of places. From an educational perspective, teaching activities are closely linked to research and can take on different levels of complexity: from the various forms of cartographic translation to the design of sophisticated transmedia digital systems. In the wake of COVID-19, this discipline has come to terms with a profoundly changed scenario in terms of limited access to the physical space and the emergence of new technologies for remote access. In this unique context, we propose a pedagogical strategy that focuses on the hybridization of communication artifacts with the aim of fostering design experimentation. As a creative tool, hybridization leads to the design of innovative systems by strategically combining the characteristics of different artifacts to achieve specific communication goals. By experimenting with these creative strategies, students are led to critically reflect on existing communication artifacts’ features and explore original designs that deliberately combine different media, contents, and communication languages in innovative ways. Through hybridization, the methods for territorial knowledge production appear more effective, effectively combining the skills and knowledge embodied in multiple subject areas. The paper presents the experience developed in the teaching laboratories of the DCxT (Communication Design for the Territory) research group of the Design Department of Politecnico di Milano. The teaching experience highlights how hybridization strategies can increase the effectiveness in learning about territorial specificities, in acquiring critical knowledge about communication systems, and in developing innovation strategies that allow to influence the evolution of traditional communication models

    Design techniques to enhance low-power wireless communication soc with reconfigurability and wake up radio

    Get PDF
    Nowadays, Internet of things applications are increasing, and each end-node has more demanding requirements such as energy efficiency and speed. The thesis proposes a heterogeneous elaboration unit for smart power applications, that consists of an ultra-low-power microcontroller coupled with a small (around 1k equivalent gates) soft-core of embedded FPGA. This digital system is implemented in 90-nm BCD technology of STMicroelectronics, and through the analysis presented in this thesis proves to have good performance in terms of power consumption and latency. The idea is to increase the system performance exploiting the embedded FPGA to managing smart power tasks. For the intended applications, a remarkable computational load is not required, it is just required the implementation of simple finite state machines, since they are event-driven applications. In this way, while the microcontroller deals with other system computations such as high-level communications, the eFPGA can efficiently manage smart power applications. An added value of the proposed elaboration unit is that a soft-core approach is applied to the whole digital system including the eFPGA, and hence, it is portable to different technologies. On the other hand, the configurability improvement has a straightforward drawback of about a 20–27% area overhead. The eFPGA usage to manage smart power applications, allows the system to reduce the required energy per task from about 400 to around 800 times compared to a processor implementation. The eFPGA utilization improves also the latency performance of the system reaching from 8 to 145 times less latency in terms of clock cycles. The thesis also introduces the architecture of a nano-watt wake-up radio integrated circuit implemented in 90-nm BCD technology of STMicroelectronics. The wake-up radio is an auxiliary always-on radio for medium-range applications that allows the IoT end-nodes to drastically reduce the power consumption during the node idle-listening communication phase

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Undergraduate Calendar 1989-1990

    Get PDF

    Quantum money and scalable 21-cm cosmology

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 165-170).This thesis covers two unrelated topics. The first part of my thesis is about quantum money, a cryptographic protocol in which a mint can generate a quantum state that no one can copy. In public-key quantum money, anyone can verify that a given quantum state came from the mint, and in collision-free quantum money, even the mint cannot generate two valid quantum bills with the same serial number. I present quantum state restoration, a new quantum computing technique that can be used to counterfeit several designs for quantum money. I describe a few other approaches to quantum money, one of which is published, that do not work. I then present a technique that seems to be secure based on a new mathematical object called a component mixer, and I give evidence money using this technique is hard to counterfeit. I describe a way to implement a component mixer and the corresponding quantum money using techniques from knot theory. The second part of my thesis is about 21-cm cosmology and the Fast Fourier transform telescope. With the FFT telescope group at MIT, I worked on a design for a radio telescope that operates between 120 and 200 MHz and will scale to an extremely large number of antennas N. We use an aperture synthesis technique based on Fast Fourier transforms with computational costs proportional toN logN instead of N2. This eliminates the cost of computers as the main limit on the size of a radio interferometer. In this type of telescope, the cost of each antenna matters regardless of how large the telescope becomes, so we focus on reducing the cost of each antenna as much as possible. I discuss the FFT aperture synthesis technique and its equivalence to standard techniques on an evenly spaced grid. I describe analog designs that can reduce the cost per antenna. I give algorithms to analyze raw data from our telescope to help debug and calibrate its components, with particular emphasis on cross-talk between channels and I/Q imbalance. Finally, I present a scalable design for a computer network that can solve the corner-turning problem.by Andrew Lutomirski.Ph.D
    corecore