27 research outputs found

    A DSATUR-based algorithm for the Equitable Coloring Problem

    Get PDF
    This paper describes a new exact algorithm for the Equitable Coloring Problem, a coloring problem where the sizes of two arbitrary color classes differ in at most one unit. Based on the well known DSatur algorithm for the classic Coloring Problem, a pruning criterion arising from equity constraints is proposed and analyzed. The good performance of the algorithm is shown through computational experiments over random and benchmark instances.Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentin

    A tabu search heuristic for the Equitable Coloring Problem

    Get PDF
    The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances

    Equitable defective coloring of sparse planar graphs

    Get PDF
    A graph has an equitable, defective k-coloring (an ED-k-coloring) if there is a k-coloring of V(G) that is defective (every vertex shares the same color with at most one neighbor) and equitable (the sizes of all color classes differ by at most one). A graph may have an ED-k-coloring, but no ED-(k + 1)-coloring. In this paper, we prove that planar graphs with minimum degree at least 2 and girth at least 10 are ED-k-colorable for any integer k \u3e= 3. The proof uses the method of discharging. We are able to simplify the normally lengthy task of enumerating forbidden substructures by using Hall\u27s Theorem, an unusual approach. Published by Elsevier B.V

    Equitable colorings of Kronecker products of graphs

    Get PDF
    AbstractFor a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xy∈E(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<j≤k. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by χ=∗(G), is the minimum t such that G is equitably k-colorable for k≥t. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and χ=∗(G×H) when G and H are complete graphs, bipartite graphs, paths or cycles

    A polyhedral approach for the Equitable Coloring Problem

    Full text link
    In this work we study the polytope associated with a 0,1-integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence that shows the efficacy of these inequalities used in a cutting-plane algorithm
    corecore