17 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    An analysis between different algorithms for the graph vertex coloring problem

    Get PDF
    This research focuses on an analysis of different algorithms for the graph vertex coloring problem. Some approaches to solving the problem are discussed. Moreover, some studies for the problem and several methods for its solution are analyzed as well. An exact algorithm (using the backtracking method) is presented. The complexity analysis of the algorithm is discussed. Determining the average execution time of the exact algorithm is consistent with the multitasking mode of the operating system. This algorithm generates optimal solutions for all studied graphs. In addition, two heuristic algorithms for solving the graph vertex coloring problem are used as well. The results show that the exact algorithm can be used to solve the graph vertex coloring problem for small graphs with 30-35 vertices. For half of the graphs, all three algorithms have found the optimal solutions. The suboptimal solutions generated by the approximate algorithms are identical in terms of the number of colors needed to color the corresponding graphs. The results show that the linear increase in the number of vertices and edges of the analyzed graphs causes a linear increase in the number of colors needed to color these graphs

    Master index to volumes 251-260

    Get PDF
    corecore