67 research outputs found

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most rεn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join GKtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(V(H)r1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF

    Master index to volumes 251-260

    Get PDF
    corecore