2,031 research outputs found

    Stationary distributions of the multi-type ASEP

    Full text link
    We give a recursive construction of the stationary distribution of multi-type asymmetric simple exclusion processes on a finite ring or on the infinite line ZZ. The construction can be interpreted in terms of "multi-line diagrams" or systems of queues in tandem. Let qq be the asymmetry parameter of the system. The queueing construction generalises the one previously known for the totally asymmetric (q=0q=0) case, by introducing queues in which each potential service is unused with probability qkq^k when the queue-length is kk. The analysis is based on the matrix product representation of Prolhac, Evans and Mallick. Consequences of the construction include: a simple method for sampling exactly from the stationary distribution for the system on a ring; results on common denominators of the stationary probabilities, expressed as rational functions of qq with non-negative integer coefficients; and probabilistic descriptions of "convoy formation" phenomena in large systems.Comment: 54 pages, 4 figure

    Control of Robotic Mobility-On-Demand Systems: a Queueing-Theoretical Perspective

    Full text link
    In this paper we present and analyze a queueing-theoretical model for autonomous mobility-on-demand (MOD) systems where robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the entire network. We cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles and keeping vehicles availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City. The case study shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 60% of the size of the current taxi fleet). Finally, we extend our queueing-theoretical setup to include congestion effects, and we study the impact of autonomously rebalancing vehicles on overall congestion. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.Comment: 10 pages, To appear at RSS 201

    Energy Sharing for Multiple Sensor Nodes with Finite Buffers

    Full text link
    We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes in order to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the ϵ\epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization in order to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.Comment: 38 pages, 10 figure

    Performance modelling with adaptive hidden Markov models and discriminatory processor sharing queues

    Get PDF
    In modern computer systems, workload varies at different times and locations. It is important to model the performance of such systems via workload models that are both representative and efficient. For example, model-generated workloads represent realistic system behaviour, especially during peak times, when it is crucial to predict and address performance bottlenecks. In this thesis, we model performance, namely throughput and delay, using adaptive models and discrete queues. Hidden Markov models (HMMs) parsimoniously capture the correlation and burstiness of workloads with spatiotemporal characteristics. By adapting the batch training of standard HMMs to incremental learning, online HMMs act as benchmarks on workloads obtained from live systems (i.e. storage systems and financial markets) and reduce time complexity of the Baum-Welch algorithm. Similarly, by extending HMM capabilities to train on multiple traces simultaneously it follows that workloads of different types are modelled in parallel by a multi-input HMM. Typically, the HMM-generated traces verify the throughput and burstiness of the real data. Applications of adaptive HMMs include predicting user behaviour in social networks and performance-energy measurements in smartphone applications. Equally important is measuring system delay through response times. For example, workloads such as Internet traffic arriving at routers are affected by queueing delays. To meet quality of service needs, queueing delays must be minimised and, hence, it is important to model and predict such queueing delays in an efficient and cost-effective manner. Therefore, we propose a class of discrete, processor-sharing queues for approximating queueing delay as response time distributions, which represent service level agreements at specific spatiotemporal levels. We adapt discrete queues to model job arrivals with distributions given by a Markov-modulated Poisson process (MMPP) and served under discriminatory processor-sharing scheduling. Further, we propose a dynamic strategy of service allocation to minimise delays in UDP traffic flows whilst maximising a utility function.Open Acces

    Regularities and Irregularities in Order Flow Data

    Full text link
    We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the orderbook. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the orderbook structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.Comment: 10 pages, 9 figure

    Dynamic traffic equilibria with route and departure time choice

    Get PDF
    This thesis studies the dynamic equilibrium behavior in traffic networks and it is motivated by rush-hour congestion. It is well understood that one of the key causes of traffic congestion relies on the behavior of road users. These do not coordinate their actions in order to avoid the creation of traffic jams, but rather make choices that favor only themselves and not the community. An equilibrium occurs when everyone is satisfied with his own choices and would not benefit from changing them. We focus on dynamic mathematical models where the congestion delay of a road varies over time, depending on the amount of traffic that has crossed it up to that specific moment and independently on the pattern of traffic that will cross it at a later time. We mainly consider settings with arbitrary network topologies where users choose both the route and departure time and we tackle questions such as the followings: - Does an equilibrium always exist? - Can there be different equilibria? - How can an equilibrium behavior be computed? - How can one set tolls on roads so that, in an equilibrium, there is no congestion and social welfare is maximized

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented
    corecore