39,835 research outputs found

    Landscape and flux for quantifying global stability and dynamics of game theory

    Full text link
    Game theory has been widely applied to many areas including economics, biology and social sciences. However, it is still challenging to quantify the global stability and global dynamics of the game theory. We developed a landscape and flux framework to quantify the global stability and global dynamics of the game theory. As an example, we investigated the models of three-strategy games: a special replicator-mutator game, the repeated prison dilemma model. In this model, one stable state, two stable states and limit cycle can emerge under different parameters. The repeated Prisoner's Dilemma system has Hopf bifurcation transitions from one stable state to limit cycle state, and then to another one stable state or two stable states, or vice versa. We explored the global stability of the repeated Prisoner's Dilemma system and the kinetic paths between the basins of attractor. The paths are irreversible due to the non-zero flux. One can explain the game for PeacePeace and WarWar.Comment: 25 pages, 15 figure

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results

    Inertial game dynamics and applications to constrained optimization

    Get PDF
    Aiming to provide a new class of game dynamics with good long-term rationality properties, we derive a second-order inertial system that builds on the widely studied "heavy ball with friction" optimization method. By exploiting a well-known link between the replicator dynamics and the Shahshahani geometry on the space of mixed strategies, the dynamics are stated in a Riemannian geometric framework where trajectories are accelerated by the players' unilateral payoff gradients and they slow down near Nash equilibria. Surprisingly (and in stark contrast to another second-order variant of the replicator dynamics), the inertial replicator dynamics are not well-posed; on the other hand, it is possible to obtain a well-posed system by endowing the mixed strategy space with a different Hessian-Riemannian (HR) metric structure, and we characterize those HR geometries that do so. In the single-agent version of the dynamics (corresponding to constrained optimization over simplex-like objects), we show that regular maximum points of smooth functions attract all nearby solution orbits with low initial speed. More generally, we establish an inertial variant of the so-called "folk theorem" of evolutionary game theory and we show that strict equilibria are attracting in asymmetric (multi-population) games - provided of course that the dynamics are well-posed. A similar asymptotic stability result is obtained for evolutionarily stable strategies in symmetric (single- population) games.Comment: 30 pages, 4 figures; significantly revised paper structure and added new material on Euclidean embeddings and evolutionarily stable strategie
    • …
    corecore