507 research outputs found

    Complexity results for some classes of strategic games

    Get PDF
    Game theory is a branch of applied mathematics studying the interaction of self-interested entities, so-called agents. Its central objects of study are games, mathematical models of real-world interaction, and solution concepts that single out certain outcomes of a game that are meaningful in some way. The solutions thus produced can then be viewed both from a descriptive and from a normative perspective. The rise of the Internet as a computational platform where a substantial part of today's strategic interaction takes place has spurred additional interest in game theory as an analytical tool, and has brought it to the attention of a wider audience in computer science. An important aspect of real-world decision-making, and one that has received only little attention in the early days of game theory, is that agents may be subject to resource constraints. The young field of algorithmic game theory has set out to address this shortcoming using techniques from computer science, and in particular from computational complexity theory. One of the defining problems of algorithmic game theory concerns the computation of solution concepts. Finding a Nash equilibrium, for example, i.e., an outcome where no single agent can gain by changing his strategy, was considered one of the most important problems on the boundary of P, the complexity class commonly associated with efficient computation, until it was recently shown complete for the class PPAD. This rather negative result for general games has not settled the question, however, but immediately raises several new ones: First, can Nash equilibria be approximated, i.e., is it possible to efficiently find a solution such that the potential gain from a unilateral deviation is small? Second, are there interesting classes of games that do allow for an exact solution to be computed efficiently? Third, are there alternative solution concepts that are computationally tractable, and how does the value of solutions selected by these concepts compare to those selected by established solution concepts? The work reported in this thesis is part of the effort to answer the latter two questions. We study the complexity of well-known solution concepts, like Nash equilibrium and iterated dominance, in various classes of games that are both natural and practically relevant: ranking games, where outcomes are rankings of the players; anonymous games, where players do not distinguish between the other players in the game; and graphical games, where the well-being of any particular player depends only on the actions of a small group other players. In ranking games, we further compare the payoffs obtainable in Nash equilibrium outcomes with those of alternative solution concepts that are easy to compute. We finally study, in general games, solution concepts that try to remedy some of the shortcomings associated with Nash equilibrium, like the need for randomization to achieve a stable outcome

    The Empirical Implications of Rank in Bimatrix Games

    Get PDF
    We study the structural complexity of bimatrix games, formalized via rank, from an empirical perspective. We consider a setting where we have data on player behavior in diverse strategic situations, but where we do not observe the relevant payoff functions. We prove that high complexity (high rank) has empirical consequences when arbitrary data is considered. Additionally, we prove that, in more restrictive classes of data (termed laminar), any observation is rationalizable using a low-rank game: specifically a zero-sum game. Hence complexity as a structural property of a game is not always testable. Finally, we prove a general result connecting the structure of the feasible data sets with the highest rank that may be needed to rationalize a set of observations

    Spatial interactions in agent-based modeling

    Full text link
    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution of economic activities, - out of equilibrium. The Eurace@Unibi Model, an agent-based macroeconomic model with spatial structure, is used to illustrate the potential of such an approach for spatial policy analysis.Comment: 26 pages, 5 figures, 105 references; a chapter prepared for the book "Complexity and Geographical Economics - Topics and Tools", P. Commendatore, S.S. Kayam and I. Kubin, Eds. (Springer, in press, 2014

    The Complexity of angel-daemons and game isomorphism

    Get PDF
    The analysis of the computational aspects of strategic situations is a basic field in Computer Sciences. Two main topics related to strategic games have been developed. First, introduction and analysis of a class of games (so called angel/daemon games) designed to asses web applications, have been considered. Second, the problem of isomorphism between strategic games has been analysed. Both parts have been separately considered. Angel-Daemon Games A service is a computational method that is made available for general use through a wide area network. The performance of web-services may fluctuate; at times of stress the performance of some services may be degraded (in extreme cases, to the point of failure). In this thesis uncertainty profiles and Angel-Daemon games are used to analyse servicebased behaviours in situations where probabilistic reasoning may not be appropriate. In such a game, an angel player acts on a bounded number of ¿angelic¿ services in a beneficial way while a daemon player acts on a bounded number of ¿daemonic¿ services in a negative way. Examples are used to illustrate how game theory can be used to analyse service-based scenarios in a realistic way that lies between over-optimism and over-pessimism. The resilience of an orchestration to service failure has been analysed - here angels and daemons are used to model services which can fail when placed under stress. The Nash equilibria of a corresponding Angel-Daemon game may be used to assign a ¿robustness¿ value to an orchestration. Finally, the complexity of equilibria problems for Angel-Daemon games has been analysed. It turns out that Angel-Daemon games are, at the best of our knowledge, the first natural example of zero-sum succinct games. The fact that deciding the existence of a pure Nash equilibrium or a dominant strategy for a given player is Sp 2-complete has been proven. Furthermore, computing the value of an Angel-Daemon game is EXP-complete. Thus, matching the already known complexity results of the corresponding problems for the generic families of succinctly represented games with exponential number of actions. Game Isomorphism The question of whether two multi-player strategic games are equivalent and the computational complexity of deciding such a property has been addressed. Three notions of isomorphisms, strong, weak and local have been considered. Each one of these isomorphisms preserves a different structure of the game. Strong isomorphism is defined to preserve the utility functions and Nash equilibria. Weak isomorphism preserves only the player preference relations and thus pure Nash equilibria. Local isomorphism preserves preferences defined only on ¿close¿ neighbourhood of strategy profiles. The problem of the computational complexity of game isomorphism, which depends on the level of succinctness of the description of the input games but it is independent of the isomorphism to consider, has been shown. Utilities in games can be given succinctly by Turing machines, boolean circuits or boolean formulas, or explicitly by tables. Actions can be given also explicitly or succinctly. When the games are given in general form, an explicit description of actions and a succinct description of utilities have been assumed. It is has been established that the game isomorphism problem for general form games is equivalent to the circuit isomorphism when utilities are described by Turing Machines; and to the boolean formula isomorphism problem when utilities are described by formulas. When the game is given in explicit form, it is has been proven that the game isomorphism problem is equivalent to the graph isomorphism problem. Finally, an equivalence classes of small games and their graphical representation have been also examined.Postprint (published version

    Swap Stability in Schelling Games on Graphs

    Get PDF
    We study a recently introduced class of strategic games thatis motivated by and generalizes Schelling’s well-known resi-dential segregation model. These games are played on undi-rected graphs, with the set of agents partitioned into multi-ple types; each agent either occupies a node of the graph andnever moves away or aims to maximize the fraction of herneighbors who are of her own type. We consider a variant ofthis model that we call swap Schelling games, where the num-ber of agents is equal to the number of nodes of the graph, andagents mayswappositions with other agents to increase theirutility. We study the existence, computational complexity andquality of equilibrium assignments in these games, both froma social welfare perspective and from a diversity perspective
    • …
    corecore