341 research outputs found

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15

    Truthful approximation mechanisms for restricted combinatorial auctions

    Get PDF
    When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCG-like payment rules will not ensure truthfulness). We develop a set of techniques that allow constructing efficiently computable truthful mechanisms for combinatorial auctions in the special case where each bidder desires a specific known subset of items and only the valuation is unknown by the mechanism (the single parameter case). For this case we extend the work of Lehmann, O'Callaghan, and Shoham, who presented greedy heuristics. We show how to use If-Then-Else constructs, perform a partial search, and use the LP relaxation. We apply these techniques for several canonical types of combinatorial auctions, obtaining truthful mechanisms with provable approximation ratios

    On the Inefficiency of the Uniform Price Auction

    Full text link
    We present our results on Uniform Price Auctions, one of the standard sealed-bid multi-unit auction formats, for selling multiple identical units of a single good to multi-demand bidders. Contrary to the truthful and economically efficient multi-unit Vickrey auction, the Uniform Price Auction encourages strategic bidding and is socially inefficient in general. The uniform pricing rule is, however, widely popular by its appeal to the natural anticipation, that identical items should be identically priced. In this work we study equilibria of the Uniform Price Auction for bidders with (symmetric) submodular valuation functions, over the number of units that they win. We investigate pure Nash equilibria of the auction in undominated strategies; we produce a characterization of these equilibria that allows us to prove that a fraction 1-1/e of the optimum social welfare is always recovered in undominated pure Nash equilibrium -- and this bound is essentially tight. Subsequently, we study the auction under the incomplete information setting and prove a bound of 4-2/k on the economic inefficiency of (mixed) Bayes Nash equilibria that are supported by undominated strategies.Comment: Additions and Improvements upon SAGT 2012 results (and minor corrections on the previous version
    • …
    corecore