11,823 research outputs found

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes

    Separable and Low-Rank Continuous Games

    Full text link
    In this paper, we study nonzero-sum separable games, which are continuous games whose payoffs take a sum-of-products form. Included in this subclass are all finite games and polynomial games. We investigate the structure of equilibria in separable games. We show that these games admit finitely supported Nash equilibria. Motivated by the bounds on the supports of mixed equilibria in two-player finite games in terms of the ranks of the payoff matrices, we define the notion of the rank of an n-player continuous game and use this to provide bounds on the cardinality of the support of equilibrium strategies. We present a general characterization theorem that states that a continuous game has finite rank if and only if it is separable. Using our rank results, we present an efficient algorithm for computing approximate equilibria of two-player separable games with fixed strategy spaces in time polynomial in the rank of the game

    An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

    Full text link
    While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×20002000 \times 2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria

    Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body

    Full text link
    We consider the unrestricted problem of two mutually attracting rigid bodies, an uniform sphere (or a point mass) and an axially symmetric body. We present a global, geometric approach for finding all relative equilibria (stationary solutions) in this model, which was already studied by Kinoshita (1970). We extend and generalize his results, showing that the equilibria solutions may be found by solving at most two non-linear, algebraic equations, assuming that the potential function of the symmetric rigid body is known explicitly. We demonstrate that there are three classes of the relative equilibria, which we call "cylindrical", "inclined co-planar", and "conic" precessions, respectively. Moreover, we also show that in the case of conic precession, although the relative orbit is circular, the point-mass and the mass center of the body move in different parallel planes. This solution has been yet not known in the literature.Comment: The manuscript with 10 pages, 5 figures; accepted to the Monthly Notices of the Royal Astronomical Societ

    Dynamic phenomena arising from an extended Core Group model

    Get PDF
    In order to obtain a reasonably accurate model for the spread of a particular infectious disease through a population, it may be necessary for this model to possess some degree of structural complexity. Many such models have, in recent years, been found to exhibit a phenomenon known as backward bifurcation, which generally implies the existence of two subcritical endemic equilibria. It is often possible to refine these models yet further, and we investigate here the influence such a refinement may have on the dynamic behaviour of a system in the region of the parameter space near R0 = 1. We consider a natural extension to a so-called core group model for the spread of a sexually transmitted disease, arguing that this may in fact give rise to a more realistic model. From the deterministic viewpoint we study the possible shapes of the resulting bifurcation diagrams and the associated stability patterns. Stochastic versions of both the original and the extended models are also developed so that the probability of extinction and time to extinction may be examined, allowing us to gain further insights into the complex system dynamics near R0 = 1. A number of interesting phenomena are observed, for which heuristic explanations are provided
    • …
    corecore