993 research outputs found

    Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity

    Get PDF
    A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs an H(div)H (\text{div})-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood combination of continuous finite element spaces of polynomial degrees k+1k+1 and kk for the displacement and the pressure, respectively. Our construction leads then to reconstructed stresses by Raviart-Thomas elements of degree kk which are weakly symmetric in the sense that its anti-symmetric part is zero tested against continuous piecewise polynomial functions of degree kk. The computation is performed locally on a set of vertex patches covering the computational domain in the spirit of equilibration \cite{BraSch:08}. Due to the weak symmetry constraint, the local problems need to satisfy consistency conditions associated with all rigid body modes, in contrast to the case of Poisson's equation where only the constant modes are involved. The resulting error estimator is shown to constitute a guaranteed upper bound for the error with a constant that depends only on the shape regularity of the triangulation. Local efficiency, uniformly in the incompressible limit, is deduced from the upper bound by the residual error estimator

    Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system

    Get PDF
    We consider a conforming finite element approximation of the Reissner-Mindlin system. We propose a new robust a posteriori error estimator based on H(div) conforming finite elements and equilibrated fluxes. It is shown that this estimator gives rise to an upper bound where the constant is one up to higher order terms. Lower bounds can also be established with constants depending on the shape regularity of the mesh. The reliability and efficiency of the proposed estimator are confirmed by some numerical tests
    corecore