230 research outputs found

    The Formation of Distal Impact Ejecta

    Get PDF
    Here we present two models for the dynamics of ejection and formation of distal impact ejecta. The first model focuses on the most highly shocked material that forms a massive expanding vapor plume or fireball. In this model molten droplets or spherules condense from the vapor. We model the expanding vapor plume using a one dimensional Lagrangian hydrocode. The condensation of droplets is treated by directly coupling the equations for homogeneous nucleation and growth with our hydrocode. The second model is focused on less energetic material ejected as part of the excavation flow. Using the iSALE hydrocode, we determine the details of the excavation flow and formation of the ejecta curtain. Using this information and some simple analytical approximations we produce a model for the formation of melt droplet spherules, melt fragments, and accretionary impact lapilli, within this flow. Using our model for spherules produced in the vapor plume, we create a method to estimate the size of an impactor and impact velocity required to create a spherule layer. The impactor size depends on the thickness of the layer and the impact velocity depends on the size of the spherules within the layer. Using observations of known spherule layers and the derived dependence on impactor size, we show that the impactor flux on Earth was significantly higher ~2-3.5 Gyr ago than it is today. Our model for the less energetic material ejected as part of the ejecta curtain predicts how ejecta particle sizes depend on impactor size and ejection velocity. In the future, this model can also be used to estimate the scale of an impact required to make observed distal impact ejecta layers

    Complex geometry of volcanic vents and asymmetric particle ejection: experimental insights

    Get PDF
    Explosive volcanic eruptions eject a gas-particle mixture into the atmosphere. The characteristics of this mixture in the near-vent region are a direct consequence of the underlying initial conditions at fragmentation and the geometry of the shallow plumbing system. Yet, it is not possible to observe directly the sub-surface parameters that drive such eruptions. Here, we use scaled shock-tube experiments mimicking volcanic explosions in order to elucidate the effects of a number of initial conditions. As volcanic vents can be expected to possess an irregular geometry, we utilise three vent designs, two complex vents and a vent with a real volcanic geometry. The defining geometry elements of the complex vents are a bilateral symmetry with a slanted top plane. The real geometry is based on a photogrammetric 3D model of an active volcanic vent with a steep and a diverging vent side. Particle size and density as well as experimental pressure are varied. Our results reveal a strong influence of the vent geometry, on both the direction and the magnitude of particle spreading and the velocity of particles. The overpressure at the vent herby controls the direction of the asymmetry of the gas-particle jet. These findings have implications for the distribution of volcanic ejecta and resulting areas at risk

    Morphology and Morphometry of Double Layered Ejecta Craters on Mars

    Get PDF
    Double layered ejecta (DLE) craters display two distinct layers of ejecta that appear to have been emplaced as a mobile, ground-hugging flow. While volatile content within the target, atmosphere, or some combination of the two is generally considered a major variable enhancing the mobility of ejecta, the presence of unconsolidated surface materials may also have some effect. This statement is studied further here, aiming to determine whether bulk target lithology and/or attributes of the surface have any effect on morphometric properties between DLEs situated on sedimentary targets to those on volcanic ones. Results suggest that ejecta mobility (the distance ejecta travels from the crater rim) generally increases with increasing latitude and may reflect volatile concentrations on Mars, while lobateness (sinuosity of the perimeter of ejecta) generally decreases with increasing latitude. Furthermore, DLEs on sedimentary targets appear to have a higher EM, on average, than those on volcanic targets

    Hydrocode modeling of oblique impacts into terrestrial planets

    Get PDF
    The abundance of moderately siderophile elements (“iron-loving”; e.g., Co, Ni) in the Earth’s mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. I have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments sink through the magma ocean and settle deeper into the planet. My results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean. The largest known impact on the Moon formed the South Pole-Aitken (SP-A) basin and excavated material as deep as the mantle. Here I suggest that large impacts eject enough material to cover the farside of the Moon. During the impact process, ejecta leave the crater and travel well beyond the transient crater. Ejecta blankets depend on impactor size and angle. I use iSALE, an impact hydrocode, to determine the ejecta distribution, volume, and thickness. I calculate the trajectory of ejecta that leave the crater and return to the lunar surface. In these simulations, an ejecta blanket forms, with a thickness of kilometers, over the lunar farside. The ejecta blanket thicknesses are comparable to the difference between nearside and farside crustal thickness. Previous studies suggest other possible mechanisms for the lunar farside-nearside dichotomy. However, the impact that formed SP-A basin was large enough to eject material onto the farside. I also suggest a differentiated impactor’s core would disperse downrange of the impact point underneath the basin. Doublet craters form within crater rays on terrestrial bodies. The near simultaneous impact of two projectiles results in overlapping craters. This process results in modified crater morphologies and ejecta morphologies. I modeled the impact of two identical projectiles and vary the angle, timing, and initial separation distance. In this work, I identified projectiles with a separation distance of four times their initial diameter will form distinct craters, but the ejecta from the uprange crater will overfill the downrange crater and result in a smaller crater depth. This result implies the direction of the impactor may be inferred from the crater depths. Also, I found impacts that form closer together result in elliptical or dumbbell craters depending upon the impact parameters. The ejecta curtains interact in each simulation and result in structures similar to the V-shaped ridges or “herringbone” patterns traversing clusters of secondary craters in observations. The ejecta that lands within the ridges comes from a depth that is 100 to 125 m for a 500 m impactor traveling at 1 km/s. This is less deep than the maximum excavation depth of 125 to 150 m, depending upon the impact angle. This work represents a first step towards a more comprehensive method for not only determining how doublet craters form and how aberrant craters form, such as Messier A on the Moon, but also determining how the regolith changes and the ejecta blanket forms for such impacts

    The Interaction of rock and water during shock decompression: A hybrid model for fluidized ejecta formation

    Full text link
    Crater and ejecta morphology provide insight into the composition and structure of the target material. Martian rampart craters, with their unusual single-layered (SLE), double-layered (DLE), and multi-layered ejecta (MLE), are the subject of particular interest among planetary geologists because these morphologies are thought to result from the presence of water in the target. Also of interest are radial lines extending from the crater rim to the distal rampart of DLE craters. Exactly how these layered ejecta morphologies and radial lines form is not known, but they are generally thought to result from interaction of the ejecta with the atmosphere, subsurface volatiles, or some combination of both. Using the shock tube at the University of Munich, this dissertation tests the hypothesis that the decompression of a rock-water mixture across the vaporization curve for water during the excavation stage of impact cratering results in an increased proportion of fines in the ejecta. This increase in fine material causes the ejecta to flow with little or no liquid water. Also tested are the effects of water on rock fragmentation during shock decompression when the vaporization curve for water is not crossed. Using results from these experiments, a hybrid model is proposed for the formation of fluidized ejecta and suggests that the existing atmospheric and subsurface volatile models are end members of a mechanism resulting in ejecta fluidization. Fluidized ejecta can be emplaced through interaction with an atmosphere (atmospheric model) or through addition of liquid water into the ejecta through shock melting of subsurface ice (subsurface volatile model). This dissertation proposes that these models are end members that explain the formation of fluidized ejecta on Mars. When the vaporization curve for water is crossed, the expanding water vapor increases the fragmentation of the ejecta as measured by a significant reduction in the median grain size of ejecta. Reducing the average particle size in the ejecta curtain reduces the height above the ground at which the advancing curtain becomes permeable to the atmosphere it is compressing. This allows a vortex ring to form behind the curtain and deposit fine ejecta in a fluidized fashion. When the vaporization curve for water is not crossed, water within open pore space increases the fragmentation threshold of rocks, shifting the median grain size to larger sizes. If the amount of water within open pore space is sufficiently large and the vaporization curve is not crossed, the ejecta may contain very large blocks. In the model proposed in this dissertation, the inner layer of DLE forms when there are very large blocks at the base of the ejecta curtain and much finer particles toward the top. In this situation, the larger blocks fall out first and produce the inner ejecta layer. A ring vortex is still formed where the ejecta curtain becomes permeable to the atmosphere. This vortex deposits finer grained material behind the advancing ballistic ejecta and deposits the outer layer. At discrete locations within the ejecta curtain, some of the larger blocks extend outside the average curtain width. At these points Raleigh-Taylor or Kelvin-Helmholtz instabilities (Chandrasekhar, 1981; Boyce et al., 2010) form, punching holes in the curtain and forming scouring jets below the ring vortex. These jets carve out the radial lines in the inner and outer ejecta blanket

    Multi-ring basins

    Get PDF
    The topics discussed are the planetary record, impactors and the terrestrial record, and the theory of formation.Sponsored by the Lunar and Planetary Institute.Compiled by the Lunar and Planetary InstituteThe Distal Deposits of Lunar Basins as Exemplified by Material Collected at the Apollo 14 and 16 Landing Sites / B.R. Hawke and J.W. Head--A Comparison of Martian Crater and Basin Deposits: Preliminary Results / B.R. Hawke and P.J. Mouginis-Mark--Lunar Basin Ejecta Deposits Compositions: A Summary of Chemical Mixing Model Studies / B.R. Hawke, P.D. Spudis, and A.E. Metzger--Bulk Magnetization Properties of the Fra Mauro Formation / L.L. Hood--The "Bunte Breccia" of the Ries: Terrestrial Analogue of Basin Ejecta / F. Harz--Breccia Dikes and Multi-generation Breccias: Relation to Impact Crater Formation and Modification / P. Lambert--Spacing and Morphology of Inner Basin Rings in Lunar Basins: Clues for the Origin of Ridge Rings / T.A. Maxwell--Aspects of Ring Tectonics: Mercury~ Ganymede, and Beyond / W.B. McKinnon--A Mechanical Analysis of the Valhalla Basin~ Callisto / H.J. Melosh, N.B. McKinnon, and A. Remsberg--Atmospheric Breakup of Terrestrial Impactors / H.J. Melosh and Q. Passey--Morphological Features of the Sudbury Crater / G.G. Morrison--Schiaparelli Basin, Mars: Morphology~ Tectonics and Infilling History / P.J. Mouginis-Mark, V.L. Sharpton, and B.R. Hawke--Explosion Cratering and the Formation of Central Uplifts and Multi-rings / D.J. Roddy and G.H.S. Jones--Centrifuge Simulation Study of the PRAIRIE FLAT Multi-ring Crater / R.M. Schmidt, K.A. Holsapple, and A.J. Piekutowski

    The influence of complex volcanic vent morphology on eruption dynamics

    Get PDF
    Vulkanausbrüche gelten als eine der spektakulärsten Naturgewalten unserer Erde. Gleichzeitig stellen sie jedoch auch eine Gefahr für die menschliche Gesundheit und Infrastruktur dar. Aufgrund ihrer Dynamik und ihres unberechenbaren Charakters geht von explosiven Vulkanausbrüchen eine besonders große Gefährdung des Menschen und seiner Umwelt aus. Im Zuge eines explosiven Ausbruchs werden heiße Gase und Pyroklasten in die Atmosphäre ausgeworfen. Obwohl das Monitoring aktiver Vulkane in den letzten Jahren immer weiter verbessert wurde, ist es immer noch schwierig eine konkrete Vorhersage zu den Ausbrüchen zu erstellen. Aufgrund ihrer Komplexität ist das Verhalten von Vulkanen nicht kalkulierbar. Bis heute ist weder eine Beobachtung, noch eine Messung der unterirdischen Rahmenbedingungen möglich, welche den Ausbruch steuern. Trotz dieser Unwägbarkeiten unterliegen Vulkanausbrüche dennoch physikalischen Gesetzmäßigkeiten, sodass die Möglichkeit besteht, die Prozesse im Untergrund eines Vulkans zu modellieren oder durch Experimente zu beschreiben. Aufgrund der Komplexität der Wechselwirkungen innerhalb des Systems Vulkan ist es erforderlich Experimente zunehmend realistischer zu gestalten. Sobald das ausgeworfene Material aus dem Krater austritt können wir den Ausbruch visuell Beobachten. In diesem Bereich ist das Verhalten des Ausbruchs vollständig von den Prozessen im Untergrund und von der Geometrie des Kraters abhängig. Im Vergleich zu den symmetrischen Kraterformen, welche in Experimenten und Modellen oft angenommen werden, sind die Krater in der Natur deutlich unregelmäßiger geformt. Ihre Geometrien sind oft eingekerbt und haben eine schräge Oberfläche. Zudem können sich die Kratergeometrien innerhalb kürzester Zeit verändern. Um den Einfluss der Prozesse im Untergrund zu verstehen müssen wir zuerst den Einfluss der beobachtbaren Parameter (z. B. Kratergeometrie) ergründen. Schlussendlich wird ein tiefergehendes Verständnis der Parameter, die Vulkanausbrüche steuern, zu einem Fortschritt und der Verbesserung der Gefährdungsanalysen führen. Um dies zu erreichen, habe ich Beobachtungen aus Feldkampagnen und Laborexperimenten kombiniert. Zunächst habe ich die Geometrien von Vulkankratern erfasst und deren zeitliche Entwicklung dokumentiert. Dazu haben ich die Geometrie der Krater in der Kraterterrasse des Strombolis in einer hohen Auflösung vermessen und die jeweils zugehörigen Explosionen beobachtet. Dabei konnte ich feststellen, dass sowohl die Intensität, als auch die Art und die Richtung der Ausbrüche durch Formveränderungen der Oberflächentopografie beeinflusst werden. Mittels Drohneneinsatz habe ich innerhalb eines Zeitraums von neun Monaten (Mai 2019–Januar 2020) fünf topografische Datensätze erstellt. In diesem Zeitraum war es möglich „normale“ Strombolianische Aktivität, starke Ausbrüche und sogar zwei Paroxysmen zu beobachten (3. Juli und 28. August 2019), sodass es möglich war, die verschiedenen Ausbruchstypen mit den vorherrschenden Ablagerungs- und Abtragungsprozessen zu verknüpfen. Zudem konnte ich die Anzahl der aktiven Krater, deren Positionen sowie deren Umgestaltung nachverfolgen. Da Veränderungen der Kratergeometrie und der Kraterposition auf eine Modifikation des Ausbruchsgeschehens hinweisen können, sind auch dies wichtige Faktoren für eine Gefährdungsanalyse. Die aus den Feldforschungen gewonnenen Daten zeigen deutlich die Komplexität, Vielseitigkeit und Variabilität der Formen vulkanischer Krater in einer nie da gewesenen zeitlichen und räumlichen Auflösung. Darüber hinaus haben die Beobachtungen der Vulkanausbrüche deutlich gemacht, wie stark die Beziehung zwischen dem Krater, der Kratergeometrie und dem Auswurf von pyroklastischem Material ist. Diese Erkenntnis hat eine große Bedeutung für die Gefährdungsanalyse, vor allem für Gebiete, die potentiell durch vulkanische Bomben und pyroklastischem Fallout bedroht sind. Im Anschluss habe ich eine Reihe von Dekompressionsexperimenten mit Kratergeometrien durchgeführt, welche auf den Beobachtungen am Stromboli aufbauen. Durch diese Experimente wurde der Zusammenhang zwischen Kratergeometrie und Ausbruchsdynamik bestätigt. Die verwendeten Geometrien haben eine geneigte Oberfläche mit einem Winkel von 5°, 15° und 30° und jeweils einer zylindrischen und einer trichterförmigen inneren Geometrie. Daraus ergeben sich sechs experimentelle Krater die mit folgenden experimentellen Bedingungen getestet wurden: Vier unterschiedliche Startdrücke (5, 8, 15 und 25 MPa) und zwei Gasvolumina (127.4cm3, 31.9cm3). Alle Experimente wurden bei Raumtemperatur und mit Argon durchgeführt. Trotz des vertikalen Aufbaus konnte man auf beiden Seiten des Kraters unterschiedlich große Winkel des austretenden Gases beobachten. Weiterhin war der Gasstrahl geneigt. Die Richtung der Neigung wurde durch die innere Geometrie be- stimmt. Bei einer zylindrischen Geometrie neigte sich der Gasstrahl in die Einfallsrichtung der geneigten Oberfläche. Im Falle einer trichterförmigen inneren Geometrie neigt sich der Gasstrahl entgegen der Einfallsrichtung. Der Winkel des Gasaustritts war bei einer zylindrischen inneren Geometrie immer größer als bei der trichterförmigen Geometrie. Sowohl die Winkel des Gasaustritts als auch die Neigung des Gasstrahls zeigten eine starke Reaktion auf eine Veränderung der Druckbedingung und Oberflächenneigung. Dabei zeigten sowohl der Austrittswinkel als auch die Neigung eine positive Korrelation mit dem Druck und der Oberflächenneigung. Hohe Druckbedingungen haben außerdem dafür gesorgt, dass für einen längeren Zeitraum Überdruckverhältnisse am Kraterausgang herrschten. Ein höheres Gasvolumen hat größere Gasaustrittswinkel ermöglicht. Zuletzt habe ich die Dekompressionsexperimente durch den Einsatz von Partikeln ergänzt, um so den Auswurf von Gas und Partikeln während eines explosiven Vulkanausbruchs nachzustellen. Dabei habe ich die beiden experimentellen Kratergeometrien aus den vorangegangenen Experimenten ausgewählt, welche den stärksten Einfluss auf die Gasdynamik aufgezeigt haben. Zusätzlich habe ich eine dritte Kratergeometrie verwendet, die dem aktiven Krater S1 auf Stromboli nachempfunden ist. Die Geometrie entspricht der Kratergeometrie aus der Vermessung im Mai 2019. Die S1 Geometrie zeichnet sich durch einen asymmetrischen Öffnungswinkel aus (~10° auf einer Seite, ~40° auf der anderen Seite). Zusätzlich zu den drei Kratergeometrien wurden unterschiedliche Partikel verwendet (Schlacke und Bims), mit jeweils drei unterschiedlichen Korngrößen (0.125–0.25, 0.5–1 und 1–2mm) und zwei Druckstufen (8 und 15MPa). Die Partikeldynamik, in der Nähe des experimentellen Kraters, wurde anhand der Winkel des Partikelauswurfs und der Geschwindigkeit der Partikel definiert und beschrieben. Dabei wurde festgestellt, dass die Geometrie des Kraters die Richtung und Neigung des Partikelauswurfswinkels und die Geschwindigkeit der Partikel bestimmt. Bei allen Kratergeometrien kam es zu einem asymmetrischen Partikelauswurf und im Falle von Bimspartikeln zudem zu einer ungleichmäßigen Geschwindigkeitsverteilung. Die Kombination aus Daten aus Feldkampagnen, Experimenten mit Gas und Experimenten mit zusätzlichen Partikeln zeigte deutlich den starken Einfluss der Kratergeometrie auf Eruptionen. In der Natur, führt eine modifizierte Kratergeometrie zu einem verändertem Auswurfsmuster der Pyroklasten. Im Labor haben komplexe Kratergeometrien zu geneigten Gasstrahlen, asymmetrischen Auswurfswinkeln von Gas- und Gaspartikeln und einer asymmetrischen Verteilung der Geschwindigkeit von Partikeln geführt. Auf Basis dieser Beobachtungen komme ich zu dem Schluss, dass asymmetrische Vulkankrater eine asymmetrische Verteilung von pyroklastischem Auswurf hervorrufen. Das führt zu einer bevorzugten Richtung für vulkanischen Fallout — und falls es zu einer kollabierenden Ausbruchsäule kommt — zu einer bevorzugten Richtung für pyroklastische Ströme. Der technische Fortschritt durch Drohnen, Photogrammmetrie und 3D Druck bietet einige Chancen für die Vulkanologie. Luftaufnahmen durch Drohnen ermöglichen eine schnelle, günstige und sichere Vermessung von Vulkankratern, auch in Zeiten erhöhter Aktivität. Zusammen mit Photogrammmetrie und 3D Druck lassen sich realitätsnahe Kratergeometrien erzeugen, für zunehmend realistische skalierte Laborexperimente.Volcanic eruptions are among the most violent displays of the Earth’s natural forces and threaten human health and infrastructure. Explosive eruptions are hazardous due to their impulsive and dynamic nature, ejecting gas and pyroclasts at high velocity and temperature into the atmosphere. In recent years, monitoring efforts have increased, but forecasting eruptions is still challenging as volcanoes are complex systems with the potential for inherently unpredictable behaviours. To date, the underlying boundary conditions are beyond observation and quantification. Still, they are constrained by physical laws and can be described through models and experiments. The complexity and interdependency of the parameters governing the dynamics of volcanic eruptions ask for increasingly realistic experiments to investigate the sub-surface conditions driving volcanic eruptions. Above the vent, in the near-vent region, the dynamics of explosive eruptions can first be visually observed. The characteristics at this stage are purely the result of the underlying boundary conditions and the exit (vent) geometry. Volcanic vents are rarely the symmetric features that are often assumed in models and experiments. They often exhibit highly irregular shapes with notched or slanted rims that can be transient. To eventually understand the unobservable boundary conditions, it is necessary to initially gain knowledge about the effect of the observable factors (i.e. vent geometry). This knowledge will ultimately improve the understanding of the parameters affecting an explosive event to develop accurate probabilistic hazard maps. To this end, a combination of field observations and laboratory experiments was used. First, I characterised vent and crater shape changes at a frequently erupting volcano (Stromboli) to collect high-resolution geometric data of volcanic vents and observe the related explosion dynamics. As a result of topographic changes, variable eruption intensity, style and directionality could be detected. Five topographic data sets were acquired by unoccupied aerial vehicles (UAVs) over nine months (May 2019-January 2020). During this period, changes associated with "normal" Strombolian activity, "major explosions" and paroxysmal episodes (3 July and 28 August 2019) occurred. Hence, the topographic data made it possible to link the predominant constructive and destructive processes to these eruption styles. Furthermore, the number and position of active vents changed significantly, which is a critical parameter for hazard assessment as vent geometry and position can be linked to shifts in eruptive mechanisms. These field surveys highlight the geometric complexity and variability of volcanic vents at an unprecedented spatiotemporal resolution. Additionally, the observations of explosions suggested the paramount influence of crater and vent geometry on pyroclast ejection characteristics, a fact that has strong implications for areas potentially affected by bomb impact and pyroclastic fall out. Secondly, I designed a series of shock-tube experiments incorporating the geometry elements observed at Stromboli to quantify the influence of vent geometry and several boundary conditions. These experiments validated the link between vent geometry and explosion dynamics that was observed in the field. The novel geometry element is an inclined exit plane of 5°, 15° and 30° slant angle combined with a cylindrical and diverging inner geometry resulting in six vent geometries. All experiments were conducted with gas-only (Argon) at room temperature, four different starting pressures (5, 8, 15, 25 MPa) and two reservoir volumes (127.4 cm3, 31.9 cm3). Despite the vertical setup, the slanted geometry yielded both a laterally variable gas spreading angle and an inclination of the jets. The inner geometry controlled the jet inclination towards the dip direction of the slanted exit plane (cylindrical) and against the dip direction of the slanted exit plane (diverging). Cylindrical vents produced larger gas spreading angles than diverging vents. Both gas spreading angle and jet inclination were highly sensitive to the experimental pressure and the slant angle. They had a positive correlation with maximum gas spreading angle and jet inclination. Additionally, the pressure was positively correlated with the maximum duration of underexpanded characteristics of the jet. The gas volume only showed a positive correlation with the maximum gas spreading angle. Thirdly, I added particles to the experiments to mimic the ejection of gas-particle jets during explosive volcanic eruptions. For this set of experiments, the two geometries with the 30° slant angle from the previous experimental series were used as they exhibited the strongest effect on the gas ejection dynamics. They were supplemented by a third vent that resembled the "real" geometry of Stromboli’s active S1 vent as it was mapped in May 2019 and fabricated by 3D printing. The S1’s geometry is characterised by a ~ 10° divergence on one side and a ~ 40° divergence on the other side. Besides three vent geometries, two types of particles (scoria and pumice), each with three different grain size distributions (0.125– 0.25, 0.5–1, 1–2 mm) and two starting pressures (8, 15 MPa) were used. The near-vent vent dynamics were characterised as a function of particle spreading angle and particle ejection velocity. The vent geometry governed the direction and the magnitude of particle spreading, and the velocity of particles. All geometries yielded asymmetric particle spreading as well as a non-uniform velocity distribution in experiments with pumice particles. The combination of field observations, gas-only and gas-particle experiments demonstrated the prime control exerted by vent geometry. In nature, a modification of the vent led to modified pyroclast ejection patterns. In the laboratory the complex geometries facilitated inclined gas jets, an asymmetric gas and particle spreading angle, and an asymmetric particle ejection velocity distribution. These findings suggest that the asymmetry of volcanic vents and/or craters can promote the asymmetric distribution of volcanic ejecta.Which, in turn, will lead to a preferred direction of volcanic fallout and — in case a column collapse occurs — to a preferred direction of the ensuing pyroclastic density currents. The availability of new technology like unoccupied aerial vehicles, photogrammetry and 3D printing provides several opportunities for the volcanological community. Aerial observations allow a fast, inexpensive and safe way to collect geometrical data of volcanic vents and craters, even in times of elevated volcanic activity. In combination with photogrammetry and 3D printing, "real" vents can be produced for increasingly realistic scaled laboratory experiments

    Reports of planetary geology program, 1977-1978

    Get PDF
    A compilation of abstracts of reports which summarizes work conducted by Planetary Geology Principal Investigators and their associates is presented. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at the Universtiy of Arizona, Tucson, Arizona, May 31, June 1 and 2, 1978

    Mid-sized complex crater formation in mixed crystalline-sedimentary targets: Insight from modeling and observation

    No full text
    Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earths surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first Bridging the Gap workshop recommended that geological observation and numerical modeling focussed on mid-sized (15-30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18-26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first-order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid-sized complex crater formation in a subaerial, mixed crystalline-sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre-impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post-impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Reports of planetary geology program, 1980

    Get PDF
    This is a compilation of abstracts of reports which summarize work conducted in the Planetary Geology Program. Each report reflects significant accomplishments within the area of the author's funded grant or contract
    • …
    corecore