223 research outputs found

    Equational Logic and Equational Theories of Algebras

    Get PDF

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    ‎Gautama and Almost Gautama Algebras and their associated logics

    Get PDF
    Recently, Gautama algebras were defined and investigated as a common generalization of the variety RDBLSt\mathbb{RDBLS}\rm t of regular double Stone algebras and the variety RKLSt\mathbb{RKLS}\rm t of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras (AG\mathbb{AG}, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of AG\mathbb{AG} and the equational bases for all its subvarieties are given. It is also shown that the variety AG\mathbb{AG} is a discriminator variety. Next, we consider logicizing AG\mathbb{AG}; but the variety AG\mathbb{AG} lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' (AGH\mathbb{AGH}, for short) and show that the variety AGH\mathbb{AGH} %of Almost Heyting algebras is term-equivalent to that of AG\mathbb{AG}. Next, a propositional logic, called AG\mathcal{AG} (or AGH\mathcal{AGH}), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety AG\mathbb{AG}, via AGH,\mathbb{AGH}, as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic AG\mathcal{AG}, corresponding to all the subvarieties of AG\mathbb{AG} are given. They include the axiomatic extensions RDBLSt\mathcal{RDBLS}t, RKLSt\mathcal{RKLS}t and G\mathcal{G} of the logic AG\mathcal{AG} corresponding to the varieties RDBLSt\mathbb{RDBLS}\rm t, RKLSt\mathbb{RKLS}\rm t, and G\mathbb{G} (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of AG\mathcal{AG} has the Disjunction Property. Finally, We revisit the classical logic with strong negation CN\mathcal{CN} and classical Nelson algebras CN\mathbb{CN} introduced by Vakarelov in 1977 and improve his results by showing that CN\mathcal{CN} is algebraizable with CN\mathbb{CN} as its algebraic semantics and that the logics RKLSt\mathcal{RKLS}\rm t, RKLStH\mathcal{RKLS}\rm t\mathcal{H}, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York. Department of Mathematics ; Estados Unido

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Relation algebras: Concept of points and representability

    Get PDF
    AbstractIn the axiomatization of relation algebras by Chin and Tarski certain elements are called right ideals. Aiming at applications in the relational theory of graphs and programs, we call such ideals ‘points’ and investigate an additional point axiom. First we prove a point insertion theorem. Then a representation theorem for such relation algebras is deduced by inherently relational methods, simplifying the proof of a similar result from Jónsson, Maddux and Tarski. Some historical remarks are inserted and an extended bibliography is added

    Modal Kleene algebra and applications - a survey

    Get PDF
    Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. They provide a concise and convenient algebraic framework that subsumes various other calculi and allows treating quite a variety of areas. We survey the basic theory and some prominent applications. These include, on the system semantics side, Hoare logic and PDL (Propositional Dynamic Logic), wp calculus and predicate transformer semantics, temporal logics and termination analysis of rewrite and state transition systems. On the derivation side we apply the framework to game analysis and greedy-like algorithms

    A view of canonical extension

    Get PDF
    This is a short survey illustrating some of the essential aspects of the theory of canonical extensions. In addition some topological results about canonical extensions of lattices with additional operations in finitely generated varieties are given. In particular, they are doubly algebraic lattices and their interval topologies agree with their double Scott topologies and make them Priestley topological algebras.Comment: 24 pages, 2 figures. Presented at the Eighth International Tbilisi Symposium on Language, Logic and Computation Bakuriani, Georgia, September 21-25 200
    corecore