90 research outputs found

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    A Modular Order-sorted Equational Generalization Algorithm

    Full text link
    Generalization, also called anti-unification, is the dual of unification. Given terms t and t , a generalizer is a term t of which t and t are substitution instances. The dual of a most general unifier (mgu) is that of least general generalizer (lgg). In this work, we extend the known untyped generalization algorithm to, first, an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; second, we extend it to work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and third, to the combination of both, which results in a modular, order-sorted equational generalization algorithm. Unlike the untyped case, there is in general no single lgg in our framework, due to order-sortedness or to the equational axioms. Instead, there is a finite, minimal and complete set of lggs, so that any other generalizer has at least one of them as an instance. Our generalization algorithms are expressed by means of inference systems for which we give proofs of correctness. This opens up new applications to partial evaluation, program synthesis, and theorem proving for typed equational reasoning systems and typed rulebased languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ, and Maude. © 2014 Elsevier Inc. All rights reserved. 1.M. Alpuente, S. Escobar, and J. Espert have been partially supported by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Valenciana PROMETEO2011/052. J. Meseguer has been supported by NSF Grants CNS 09-04749, and CCF 09-05584.Alpuente Frasnedo, M.; Escobar Román, S.; Espert Real, J.; Meseguer, J. (2014). A Modular Order-sorted Equational Generalization Algorithm. Information and Computation. 235:98-136. https://doi.org/10.1016/j.ic.2014.01.006S9813623

    Progress Report : 1991 - 1994

    Get PDF

    Concept logics

    Get PDF
    Concept languages (as used in BACK, KL-ONE, KRYPTON, LOOM) are employed as knowledge representation formalisms in Artificial Intelligence. Their main purpose is to represent the generic concepts and the taxonomical hierarchies of the domain to be modeled. This paper addresses the combination of the fast taxonomical reasoning algorithms (e.g. subsumption, the classifier etc.) that come with these languages and reasoning in first order predicate logic. The interface between these two different modes of reasoning is accomplished by a new rule of inference, called constrained resolution. Correctness, completeness as well as the decidability of the constraints (in a restricted constraint language) are shown

    Combination techniques and decision problems for disunification

    Get PDF
    Previous work on combination techniques considered the question of how to combine unification algorithms for disjoint equational theories E_{1} ,...,E_{n} in order to obtain a unification algorithm for the union E1 unified ... unified En of the theories. Here we want to show that variants of this method may be used to decide solvability and ground solvability of disunification problems in E_{1}cup...cup E_{n}. Our first result says that solvability of disunification problems in the free algebra of the combined theory E_{1}cup...cup E_{n} is decidable if solvability of disunification problems with linear constant restrictions in the free algebras of the theories E_{i}(i = 1,...,n) is decidable. In order to decide ground solvability (i.e., solvability in the initial algebra) of disunification problems in E_{1}cup...cup E_{n} we have to consider a new kind of subproblem for the particular theories Ei, namely solvability (in the free algebra) of disunification problems with linear constant restriction under the additional constraint that values of variables are not Ei-equivalent to variables. The correspondence between ground solvability and this new kind of solvability holds, (1) if one theory Ei is the free theory with at least one function symbol and one constant, or (2) if the initial algebras of all theories Ei are infinite. Our results can be used to show that the existential fragment of the theory of the (ground) term algebra modulo associativity of a finite number of function symbols is decidable; the same result follows for function symbols which are associative and commutative, or associative, commutative and idempotent

    Order-Sorted Equational Computation

    Get PDF
    The expressive power of many-sorted equational logic can be greatly enhanced by allowing for subsorts and multiple function declarations. In this paper we study some computational aspects of such a logic. We start with a self-contained introduction to order-sorted equational logic including initial algebra semantics and deduction rules. We then present a theory of order-sorted term rewriting and show that the key results for unsorted rewriting extend to sort decreasing rewriting. We continue with a review of order-sorted unification and prove the basic results. In the second part of the paper we study hierarchical order-sorted specifications with strict partial functions. We define the appropriate homomorphisms for strict algebras and show that every strict algebra is base isomorphic to a strict algebra with at most one error element. For strict specifications, we show that their categories of strict algebras have initial objects. We validate our approach to partial functions by proving that completely defined total functions can be defined as partial without changing the initial algebra semantics. Finally, we provide decidable sufficient criteria for the consistency and strictness of ground confluent rewriting systems

    ONTIC: A Knowledge Representation System for Mathematics

    Get PDF
    Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming

    Full text link
    Building rules on top of ontologies is the ultimate goal of the logical layer of the Semantic Web. To this aim an ad-hoc mark-up language for this layer is currently under discussion. It is intended to follow the tradition of hybrid knowledge representation and reasoning systems such as AL\mathcal{AL}-log that integrates the description logic ALC\mathcal{ALC} and the function-free Horn clausal language \textsc{Datalog}. In this paper we consider the problem of automating the acquisition of these rules for the Semantic Web. We propose a general framework for rule induction that adopts the methodological apparatus of Inductive Logic Programming and relies on the expressive and deductive power of AL\mathcal{AL}-log. The framework is valid whatever the scope of induction (description vs. prediction) is. Yet, for illustrative purposes, we also discuss an instantiation of the framework which aims at description and turns out to be useful in Ontology Refinement. Keywords: Inductive Logic Programming, Hybrid Knowledge Representation and Reasoning Systems, Ontologies, Semantic Web. Note: To appear in Theory and Practice of Logic Programming (TPLP)Comment: 30 pages, 6 figure
    corecore