408 research outputs found

    Better Together: Unifying Datalog and Equality Saturation

    Full text link
    We present egglog, a fixpoint reasoning system that unifies Datalog and equality saturation (EqSat). Like Datalog, it supports efficient incremental execution, cooperating analyses, and lattice-based reasoning. Like EqSat, it supports term rewriting, efficient congruence closure, and extraction of optimized terms. We identify two recent applications--a unification-based pointer analysis in Datalog and an EqSat-based floating-point term rewriter--that have been hampered by features missing from Datalog but found in EqSat or vice-versa. We evaluate egglog by reimplementing those projects in egglog. The resulting systems in egglog are faster, simpler, and fix bugs found in the original systems.Comment: PLDI 202

    Hierarchical design rewriting with Maude

    Get PDF
    Architectural Design Rewriting (ADR) is a rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation and the use of conditional rewrite rules. These features enable, e.g. hierarchical (top-down, bottom-up or composition-based) design and inductively-defined reconfigurations. The contribution of this paper is twofold: we define Hierarchical Design Rewriting (HDR) and present our prototypical tool support. HDR is a flavour of ADR that exploits the concept of hierarchical graph to deal with system specifications combining both symbolic and interpreted parts. Our prototypical implementation is based on Maude and its presentation serves several purposes. First, we show that HDR is not only a well-founded formal approach but also a tool-supported framework for the design and analysis of software architectures. Second, our illustration tailored to a particular algebra of designs and a particular scenario traces a general methodology for the reuse and exploitation of ADR concepts in other scenarios

    Nominal narrowing

    Get PDF

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    Nominal Narrowing

    Get PDF
    Nominal unification is a generalisation of first-order unification that takes alpha-equivalence into account. In this paper, we study nominal unification in the context of equational theories. We introduce nominal narrowing and design a general nominal E-unification procedure, which is sound and complete for a wide class of equational theories. We give examples of application

    Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR

    Get PDF
    International audienceExclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications , due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR.The TAMARIN prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes TAMARIN the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs

    The Role of Term Symmetry in E-Unification and E-Completion

    Get PDF
    A major portion of the work and time involved in completing an incomplete set of reductions using an E-completion procedure such as the one described by Knuth and Bendix [070] or its extension to associative-commutative equational theories as described by Peterson and Stickel [PS81] is spent calculating critical pairs and subsequently testing them for coherence. A pruning technique which removes from consideration those critical pairs that represent redundant or superfluous information, either before, during, or after their calculation, can therefore make a marked difference in the run time and efficiency of an E-completion procedure to which it is applied. The exploitation of term symmetry is one such pruning technique. The calculation of redundant critical pairs can be avoided by detecting the term symmetries that can occur between the subterms of the left-hand side of the major reduction being used, and later between the unifiers of these subterms with the left-hand side of the minor reduction. After calculation, and even after reduction to normal form, the observation of term symmetries can lead to significant savings. The results in this paper were achieved through the development and use of a flexible E-unification algorithm which is currently written to process pairs of terms which may contain any combination of Null-E, C (Commutative), AC (Associative-Commutative) and ACI (Associative-Commutative with Identity) operators. One characteristic of this E-unification algorithm that we have not observed in any other to date is the ability to process a pair of terms which have different ACI top-level operators. In addition, the algorithm is a modular design which is a variation of the Yelick model [Ye85], and is easily extended to process terms containing operators of additional equational theories by simply plugging in a unification module for the new theory

    Lineal: A linear-algebraic lambda-calculus

    Get PDF
    International audienceWe provide a computational de nition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the lambda-calculus with the possibility to make arbitrary linear combinations of terms : alpha t + beta u. We describe how to \execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the eld of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus
    corecore