12,468 research outputs found

### Identities in the Algebra of Partial Maps

We consider the identities of a variety of semigroup-related algebras modelling the algebra of partial maps. We show that the identities are intimately related to a weak semigroup deductive system and we show that the equational theory is decidable. We do this by giving a term rewriting system for the variety. We then show that this variety has many subvarieties whose equational theory interprets the full uniform word problem for semigroups and consequently are undecidable. As a corollary it is shown that the equational theory of Clifford semigroups whose natural order is a semilattice is undecidable

### On the mathematical synthesis of equational logics

We provide a mathematical theory and methodology for synthesising equational
logics from algebraic metatheories. We illustrate our methodology by means of
two applications: a rational reconstruction of Birkhoff's Equational Logic and
a new equational logic for reasoning about algebraic structure with
name-binding operators.Comment: Final version for publication in Logical Methods in Computer Scienc

### Second-Order Algebraic Theories

Fiore and Hur recently introduced a conservative extension of universal
algebra and equational logic from first to second order. Second-order universal
algebra and second-order equational logic respectively provide a model theory
and a formal deductive system for languages with variable binding and
parameterised metavariables. This work completes the foundations of the subject
from the viewpoint of categorical algebra. Specifically, the paper introduces
the notion of second-order algebraic theory and develops its basic theory. Two
categorical equivalences are established: at the syntactic level, that of
second-order equational presentations and second-order algebraic theories; at
the semantic level, that of second-order algebras and second-order functorial
models. Our development includes a mathematical definition of syntactic
translation between second-order equational presentations. This gives the first
formalisation of notions such as encodings and transforms in the context of
languages with variable binding

### Effective lambda-models vs recursively enumerable lambda-theories

A longstanding open problem is whether there exists a non syntactical model
of the untyped lambda-calculus whose theory is exactly the least lambda-theory
(l-beta). In this paper we investigate the more general question of whether the
equational/order theory of a model of the (untyped) lambda-calculus can be
recursively enumerable (r.e. for brevity). We introduce a notion of effective
model of lambda-calculus calculus, which covers in particular all the models
individually introduced in the literature. We prove that the order theory of an
effective model is never r.e.; from this it follows that its equational theory
cannot be l-beta or l-beta-eta. We then show that no effective model living in
the stable or strongly stable semantics has an r.e. equational theory.
Concerning Scott's semantics, we investigate the class of graph models and
prove that no order theory of a graph model can be r.e., and that there exists
an effective graph model whose equational/order theory is minimum among all
theories of graph models. Finally, we show that the class of graph models
enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

### Partial Horn logic and cartesian categories

A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as “partial Horn logic”.
Various kinds of logical theory are equivalent: partial Horn theories, “quasi-equational” theories (partial Horn theories without predicate symbols), cartesian theories and essentially algebraic theories.
The logic is sound and complete with respect to models in , and sound with respect to models in any cartesian (finite limit) category.
The simplicity of the quasi-equational form allows an easy predicative constructive proof of the free partial model theorem for cartesian theories: that if a theory morphism is given from one cartesian theory to another, then the forgetful (reduct) functor from one model category to the other has a left adjoint.
Various examples of quasi-equational theory are studied, including those of cartesian categories and of other classes of categories. For each quasi-equational theory another, , is constructed, whose models are cartesian categories equipped with models of . Its initial model, the “classifying category” for , has properties similar to those of the syntactic category, but more precise with respect to strict cartesian functors

- …