517,612 research outputs found

    P.A.M. Dirac and the Discovery of Quantum Mechanics

    Full text link
    Dirac's contributions to the discovery of non-relativistic quantum mechanics and quantum electrodynamics, prior to his discovery of the relativistic wave equation, are described

    Higher-order integrable evolution equation and its soliton solutions

    Get PDF
    We consider an extended nonlinear Schrödinger equation with higher-order odd and even terms with independent variable coefficients. We demonstrate its integrability, provide its Lax pair, and, applying the Darboux transformation, present its first and second order soliton solutions. The equation and its solutions have two free parameters. Setting one of these parameters to zero admits two limiting cases: the Hirota equation on the one hand and the Lakshmanan–Porsezian–Daniel (LPD) equation on the other hand. When both parameters are zero, the limit is the nonlinear Schrödinger equation.A.A. and N.A. acknowledge the support of the Australian Research Council (Discovery Project DP110102068) and also thank the Volkswagen Foundation for financial support

    Approach to first-order exact solutions of the Ablowitz-Ladik equation

    Get PDF
    We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE).Two of the authors (A.A. and N.A.) acknowledge the support of the Australian Research Council (Discovery Project No. DP0985394). N.A. is a grateful recipient of support from the Alexander von Humboldt Foundation (Germany)

    Data-driven PDE discovery with evolutionary approach

    Full text link
    The data-driven models allow one to define the model structure in cases when a priori information is not sufficient to build other types of models. The possible way to obtain physical interpretation is the data-driven differential equation discovery techniques. The existing methods of PDE (partial derivative equations) discovery are bound with the sparse regression. However, sparse regression is restricting the resulting model form, since the terms for PDE are defined before regression. The evolutionary approach described in the article has a symbolic regression as the background instead and thus has fewer restrictions on the PDE form. The evolutionary method of PDE discovery (EPDE) is described and tested on several canonical PDEs. The question of robustness is examined on a noised data example

    An introduction to operational quantum dynamics

    Full text link
    In the summer of 2016, physicists gathered in Torun, Poland for the 48th annual Symposium on Mathematical Physics. This Symposium was special; it celebrated the 40th anniversary of the discovery of the Gorini-Kossakowski-Sudarshan-Lindblad master equation, which is widely used in quantum physics and quantum chemistry. This article forms part of a Special Volume of the journal Open Systems & Information Dynamics arising from that conference; and it aims to celebrate a related discovery -- also by Sudarshan -- that of Quantum Maps (which had their 55th anniversary in the same year). Nowadays, much like the master equation, quantum maps are ubiquitous in physics and chemistry. Their importance in quantum information and related fields cannot be overstated. In this manuscript, we motivate quantum maps from a tomographic perspective, and derive their well-known representations. We then dive into the murky world beyond these maps, where recent research has yielded their generalisation to non-Markovian quantum processes.Comment: Submitted to Special OSID volume "40 years of GKLS
    • …
    corecore