6 research outputs found

    200 Gbps/lane IM/DD Technologies for Short Reach Optical Interconnects

    Get PDF
    Client-side optics are facing an ever-increasing upgrading pace, driven by upcoming 5G related services and datacenter applications. The demand for a single lane data rate is soon approaching 200 Gbps. To meet such high-speed requirement, all segments of traditional intensity modulation direct detection (IM/DD) technologies are being challenged. The characteristics of electrical and optoelectronic components and the performance of modulation, coding, and digital signal processing (DSP) techniques are being stretched to their limits. In this context, we witnessed technological breakthroughs in several aspects, including development of broadband devices, novel modulation formats and coding, and high-performance DSP algorithms for the past few years. A great momentum has been accumulated to overcome the aforementioned challenges. In this article, we focus on IM/DD transmissions, and provide an overview of recent research and development efforts on key enabling technologies for 200 Gbps per lane and beyond. Our recent demonstrations of 200 Gbps short-reach transmissions with 4-level pulse amplitude modulation (PAM) and discrete multitone signals are also presented as examples to show the system requirements in terms of device characteristics and DSP performance. Apart from digital coherent technologies and advanced direct detection systems, such as Stokes–vector and Kramers–Kronig schemes, we expect high-speed IM/DD systems will remain advantageous in terms of system cost, power consumption, and footprint for short reach applications in the short- to mid- term perspective

    Constant False Alarm Rate (CFAR) detection based estimators with applications to sparse wireless channels

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2006Includes bibliographical references (leaves: 87-89)Text in English; Abstract: Turkish and Englishx, 94 leavesWe provide Constant False Alarm Rate (CFAR) based thresholding methods for training based channel impulse response (CIR) estimation algorithms for communication systems which utilize a periodically transmitted training sequence within a continuous stream of information symbols. After obtaining the CIR estimation by using known methods in the literature, there are estimation errors which causes performance loss at equalizers. The channel estimation error can be seen as .noise. on CIR estimations and CFAR based thresholding methods, which are used in radar systems to decide the presence of a target, can effectively overcome this problem. CFAR based methods are based on determining threshold values which are computed by distribution of channel noise. We provide exact and approximate distribution of channel noise appear at CIR estimate schemes. We applied Cell Averaging-CFAR (CA-CFAR) and Order Statistic-CFAR (OSCFAR) methods on the CIR estimations. The performance of the CFAR estimators are then compared by their Least Square error in the channel estimates. The Signal to Interference plus Noise Ratio (SINR) performance of the decision feedback equalizers (DFE), of which the tap values are calculated based on the CFAR estimators, are also provided

    Využití softwarově definovaného rádia v oblasti SMART technologii

    Get PDF
    Modern telecommunication systems are rapidly evolving. This rapid development requires constant research and fast prototyping. This dissertation thesis focusses on deployment of software defined radio (SDR) in multiple application areas, including SMART technologies. SDR itself is a tool behind many breakthroughs in modern telecommunications, due to its major adaptability. It offers a comprehensive way of fast prototyping, which rely on suitable software platform. The field of telecommunications is ever-changing, due to the constant pressure on innovation. For this reason, it is desirable to test some of the alternative communication technologies. Visible light communication (VLC) system based on combination of virtual instrumentation and software defined radios was chosen for experimentation. This dissertation focusses on multiple versions of VLC system that were developed over the years. Each version is further discussed, and their advantages and disadvantages are presented. A draft of fourth and newest version is mentioned along with possible directions of the research. Results from multiple application areas are presented, which show the adaptability of the whole platform to different use cases including but not limited to: SMART technologies, automotive, nuclear waste disposal sites, or industry. It is demonstrated that the newest version of the system, which is based on OFDM modulation, can communicate up to 50 meters in closed environments and up to 35 meters in outdoor scenarios. This opens further research directions such as truck platooning or underwater communications.Moderní komunikační systémy jsou jednou z nejrychleji se rozvíjejících oblastí. Takového markantního posunu lze dosáhnout pouze skrze nový vývoj a aplikaci metodiky fast prototypingu. Tato disertace se zaměřuje na nasazení technologie softwarově definovaného rádia (SDR) v různých aplikačních oblastech. Samotné SDR je díky své adaptabilitě nástrojem, který stál na pozadí rozvoje mnoha moderních telekomunikačních systémů. Jedná se o ucelenou platformu pro fast prototyping, která se opírá o robustní softwarovou základnu. Právě telekomunikace jsou oblastí, kde je takové zařízení nedocenitelné, právě kvůli neustálému tlaku na inovace. Právě to je důvodem, proč je vhodné také testovat různé alternativní technologie pro přenos dat. Jednou z takových je komunikace viditelným spektrem světla (VLC), která je náplní této práce. Součástí praktické části je vývoj a popis několika verzí VLC systému založených na virtuální instrumentaci a SDR, které vznikly během autorova studia. Každá verze je samostatně popsána včetně výhod a nevýhod, které poskytují. Součástí je též první náčrt čtvrté verze, která bude součástí budoucího výzkumu. Prezentované výsledky z různých aplikačních oblastí jasně ukazují, že je celou platformu možné použít v různých aplikačních oblastech, včetně SMART technologií, automotive, úložišti jaderného odpadu anebo Průmyslu 4.0. Součástí jsou též výsledky z poslední verze, které dokazují, že je systém ve vnitřních prostorech komunikovat až na vzdálenost 50 metrů, zatímco ve venkovních podmínkách je to 35 metrů. Díky tomu je možné vytyčit nové oblasti výzkumu jako je například platooning (tandemová jízda) anebo podvodní komunikace.450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Enhanced Air-Interfaces for Fifth Generation Mobile Broadband Communication

    Get PDF
    In broadband wireless multicarrier communication systems, intersymbol interference (ISI) and intercarrier interference (ICI) should be reduced. In orthogonal frequency division multiplexing (OFDM), the cyclic prefix (CP) guarantees to reduce the ISI interference. However, the CP reduces spectral and power efficiency. In this thesis, iterative interference cancellation (IIC) with iterative decoding is used to reduce ISI and ICI from the received signal in multicarrier modulation (MCM) systems. Alternative schemes as well as OFDM with insufficient CP are considered; filter bank multicarrier (FBMC/Offset QAM) and discrete wavelet transform based multicarrier modulation (DWT-MCM). IIC is applied in these different schemes. The required components are calculated from either the hard decision of the demapper output or the estimated decoded signal. These components are used to improve the received signal. Channel estimation and data detection are very important parts of the receiver design of the wireless communication systems. Iterative channel estimation using Wiener filter channel estimation with known pilots and IIC is used to estimate and improve data detection. Scattered and interference approximation method (IAM) preamble pilot are using to calculate the estimated values of the channel coefficients. The estimated soft decoded symbols with pilot are used to reduce the ICI and ISI and improve the channel estimation. The combination of Multi-Input Multi-Output MIMO and OFDM enhances the air-interface for the wireless communication system. In a MIMO-MCM scheme, IIC and MIMO-IIC-based successive interference cancellation (SIC) are proposed to reduce the ICI/ISI and cross interference to a given antenna from the signal transmitted from the target and the other antenna respectively. The number of iterations required can be calculated by analysing the convergence of the IIC with the help of EXtrinsic Information Transfer (EXIT) charts. A new EXIT approach is proposed to provide a means to define performance for a given outage probability on quasi-static channels
    corecore