185 research outputs found

    Time-Interleaved Analog-to-Digital Converter (TIADC) Compensation Using Multichannel Filters

    Get PDF
    Published methods that employ a filter bank for compensating the timing and bandwidth mismatches of an M-channel time-interleaved analog-to-digital converter (TIADC) were developed based on the fact that each sub-ADC channel is a downsampled version of the analog input. The output of each sub-ADC is filtered in such a way that, when all the filter outputs are summed, the aliasing components are minimized. If each channel of the filter bank has N coefficients, the optimization of the coefficients requires computing the inverse of an MN times MN matrix if the weighted least squares (WLS) technique is used as the optimization tool. In this paper, we present a multichannel filtering approach for TIADC mismatch compensation. We apply the generalized sampling theorem to directly estimate the ideal output of each sub-ADC using the outputs of all the sub-ADCs. If the WLS technique is used as the optimization tool, the dimension of the matrix to be inversed is N times N. For the same number of coefficients (and also the same spurious component performance given sufficient arithmetic precision), our technique is computationally less complex and more robust than the filter-bank approach. If mixed integer linear programming is used as the optimization tool to produce filters with coefficient values that are integer powers of two, our technique produces a saving in computing resources by a factor of approximately (100.2N(M- 1)/(M-1) in the TIADC filter design.published_or_final_versio

    A 16-b 10Msample/s Split-Interleaved Analog to Digital Converter

    Get PDF
    This work describes the integrated circuit design of a 16-bit, 10Msample/sec, combination ‘split’ interleaved analog to digital converter. Time interleaving of analog to digital converters has been used successfully for many years as a technique to achieve faster speeds using multiple identical converters. However, efforts to achieve higher resolutions with this technique have been difficult due to the precise matching required of the converter channels. The most troublesome errors in these types of converters are gain, offset and timing differences between channels. The ‘split ADC’ is a new concept that allows the use of a deterministic, digital, self calibrating algorithm. In this approach, an ADC is split into two paths, producing two output codes from the same input sample. The difference of these two codes is used as the calibration signal for an LMS error estimation algorithm that drives the difference error to zero. The ADC is calibrated when the codes are equal and the output is taken as the average of the two codes. The ‘split’ ADC concept and interleaved architecture are combined in this IC design to form the core of a high speed, high resolution, and self-calibrating ADC system. The dual outputs are used to drive a digital calibration engine to correct for the channel mismatch errors. This system has the speed benefits of interleaving while maintaining high resolution. The hardware for the algorithm as well as the ADC can be implemented in a standard 0.25um CMOS process, resulting in a relatively inexpensive solution. This work is supported by grants from Analog Devices Incorporated (ADI) and the National Science Foundation (NSF)

    New iterative framework for frequency response mismatch correction in time-interleaved ADCs: Design and performance analysis

    Get PDF
    This paper proposes a new iterative framework for the correction of frequency response mismatch in time-interleaved analog-to-digital converters. Based on a general time-varying linear system model for the mismatch, we treat the reconstruction problem as a linear inverse problem and establish a flexible iterative framework for practical implementation. It encumbrances a number of efficient iterative correction algorithms and simplifies their design, implementation, and performance analysis. In particular, an efficient Gauss-Seidel iteration is studied in detail to illustrate how the correction problem can be solved iteratively and how the proposed structure can be efficiently implemented using Farrow-based variable digital filters with few general-purpose multipliers. We also study important issues, such as the sufficient convergence condition and reconstructed signal spectrum, derive new lower bound of signal-to-distortion-and-noise ratio in order to ensure stable operation, and predict the performance of the proposed structure. Furthermore, we propose an extended iterative structure, which is able to cope with systems involving more than one type of mismatches. Finally, the theoretical results and the effectiveness of the proposed approach are validated by means of computer simulations. © 2011 IEEE.published_or_final_versio

    A Novel Iterative Structure for Online Calibration of M-Channel Time-Interleaved ADCs

    Get PDF
    published_or_final_versio

    Design of High-Speed Power-Efficient A/D Converters for Wireline ADC-Based Receiver Applications

    Get PDF
    Serial input/output (I/O) data rates are increasing in order to support the explosion in network traffic driven by big data applications such as the Internet of Things (IoT), cloud computing and etc. As the high-speed data symbol times shrink, this results in an increased amount of inter-symbol interference (ISI) for transmission over both severe low-pass electrical channels and dispersive optical channels. This necessitates increased equalization complexity and consideration of advanced modulation schemes, such as four-level pulse amplitude modulation (PAM-4). Serial links which utilize an analog-to-digital converter (ADC) receiver front-end offer a potential solution, as they enable more powerful and flexible digital signal processing (DSP) for equalization and symbol detection and can easily support advanced modulation schemes. Moreover, the DSP back-end provides robustness to process, voltage, and temperature (PVT) variations, benefits from improved area and power with CMOS technology scaling and offers easy design transfer between different technology nodes and thus improved time-to-market. However, ADC-based receivers generally consume higher power relative to their mixed-signal counterparts because of the significant power consumed by conventional multi-GS/s ADC implementations. This motivates exploration of energy-efficient ADC designs with moderate resolution and very high sampling rates to support data rates at or above 50Gb/s. This dissertation presents two power-efficient designs of ≥25GS/s time-interleaved ADCs for ADC-based wireline receivers. The first prototype includes the implementation of a 6b 25GS/s time-interleaved multi-bit search ADC in 65nm CMOS with a soft-decision selection algorithm that provides redundancy for relaxed track-and-hold (T/H) settling and improved metastability tolerance, achieving a figure-of-merit (FoM) of 143fJ/conversion step and 1.76pJ/bit for a PAM-4 receiver design. The second prototype features the design of a 52Gb/s PAM-4 ADC-based receiver in 65nm CMOS, where the front-end consists of a 4-stage continuous-time linear equalizer (CTLE)/variable gain amplifier (VGA) and a 6b 26GS/s time-interleaved SAR ADC with a comparator-assisted 2b/stage structure for reduced digital-to-analog converter (DAC) complexity and a 3-tap embedded feed-forward equalizer (FFE) for relaxed ADC resolution requirement. The receiver front-end achieves an efficiency of 4.53bJ/bit, while compensating for up to 31dB loss with DSP and no transmitter (TX) equalization

    Concepts for smart AD and DA converters

    Get PDF
    This thesis studies the `smart' concept for application to analog-to-digital and digital-to-analog converters. The smart concept aims at improving performance - in a wide sense - of AD/DA converters by adding on-chip intelligence to extract imperfections and to correct for them. As the smart concept can correct for certain imperfections, it can also enable the use of more efficient architectures, thus yielding an additional performance boost. Chapter 2 studies trends and expectations in converter design with respect to applications, circuit design and technology evolution. Problems and opportunities are identfied, and an overview of performance criteria is given. Chapter 3 introduces the smart concept that takes advantage of the expected opportunities (described in chapter 2) in order to solve the anticipated problems. Chapter 4 applies the smart concept to digital-to-analog converters. In the discussed example, the concept is applied to reduce the area of the analog core of a current-steering DAC. It is shown that a sub-binary variable-radix approach reduces the area of the current-source elements substantially (10x compared to state-of-the-art), while maintaining accuracy by a self-measurement and digital pre-correction scheme. Chapter 5 describes the chip implementation of the sub-binary variable-radix DAC and discusses the experimental results. The results confirm that the sub-binary variable-radix design can achieve the smallest published current-source-array area for the given accuracy (12bit). Chapter 6 applies the smart concept to analog-to-digital converters, with as main goal the improvement of the overall performance in terms of a widely used figure-of-merit. Open-loop circuitry and time interleaving are shown to be key to achieve high-speed low-power solutions. It is suggested to apply a smart approach to reduce the effect of the imperfections, unintentionally caused by these key factors. On high-level, a global picture of the smart solution is proposed that can solve the problems while still maintaining power-efficiency. Chapter 7 deals with the design of a 500MSps open-loop track-and-hold circuit. This circuit is used as a test case to demonstrate the proposed smart approaches. Experimental results are presented and compared against prior art. Though there are several limitations in the design and the measurement setup, the measured performance is comparable to existing state-of-the-art. Chapter 8 introduces the first calibration method that counteracts the accuracy issues of the open-loop track-and-hold. A description of the method is given, and the implementation of the detection algorithm and correction circuitry is discussed. The chapter concludes with experimental measurement results. Chapter 9 introduces the second calibration method that targets the accuracy issues of time-interleaved circuits, in this case a 2-channel version of the implemented track-and-hold. The detection method, processing algorithm and correction circuitry are analyzed and their implementation is explained. Experimental results verify the usefulness of the method
    • …
    corecore