70,899 research outputs found

    On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values

    Full text link
    This paper studies the complexity of evaluating functional query languages for complex values such as monad algebra and the recursion-free fragment of XQuery. We show that monad algebra with equality restricted to atomic values is complete for the class TA[2^{O(n)}, O(n)] of problems solvable in linear exponential time with a linear number of alternations. The monotone fragment of monad algebra with atomic value equality but without negation is complete for nondeterministic exponential time. For monad algebra with deep equality, we establish TA[2^{O(n)}, O(n)] lower and exponential-space upper bounds. Then we study a fragment of XQuery, Core XQuery, that seems to incorporate all the features of a query language on complex values that are traditionally deemed essential. A close connection between monad algebra on lists and Core XQuery (with ``child'' as the only axis) is exhibited, and it is shown that these languages are expressively equivalent up to representation issues. We show that Core XQuery is just as hard as monad algebra w.r.t. combined complexity, and that it is in TC0 if the query is assumed fixed.Comment: Long version of PODS 2005 pape

    Goal-Driven Query Answering for Existential Rules with Equality

    Full text link
    Inspired by the magic sets for Datalog, we present a novel goal-driven approach for answering queries over terminating existential rules with equality (aka TGDs and EGDs). Our technique improves the performance of query answering by pruning the consequences that are not relevant for the query. This is challenging in our setting because equalities can potentially affect all predicates in a dataset. We address this problem by combining the existing singularization technique with two new ingredients: an algorithm for identifying the rules relevant to a query and a new magic sets algorithm. We show empirically that our technique can significantly improve the performance of query answering, and that it can mean the difference between answering a query in a few seconds or not being able to process the query at all

    Optimising Sargable Conjunctive Predicate Queries in the Context of Big Data

    Get PDF
    With the continued increase in the volume of data, the volume dimension of big data has become a significant factor in estimating query time. When all other factors are held constant, query time increases as the volume of data increases and vice versa. To enhance query time, several techniques have come out of research efforts in this direction. One of such techniques is factorisation of query predicates. Factorisation has been used as a query optimization technique for the general class of predicates but has been found inapplicable to the subclass of sargable conjunctive equality predicates. Experiments performed exposed a peculiar nature of sargable conjunctive equality predicates based on which insight, the concatenated predicate model was formulated as capable of optimising sargable conjunctive equality predicates. Equations from research results were combined in a way that theorems describing the application and optimality of the concatenated predicate model were derived and proved

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of deļ¬ning a well-founded semantics (WFS) for Datalog rules with existentially quantiļ¬ed variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent DatalogĀ± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize DatalogĀ± by non-stratiļ¬ed nonmonotonic nega- tion in rule bodies, and we deļ¬ne a WFS for this generalization via guarded ļ¬xed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its proļ¬les as well as typical DLs, which also do not make the UNA. We prove that for guarded DatalogĀ± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise deļ¬- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering

    The Complexity of Boolean Conjunctive Queries with Intersection Joins

    Full text link
    Intersection joins over interval data are relevant in spatial and temporal data settings. A set of intervals join if their intersection is non-empty. In case of point intervals, the intersection join becomes the standard equality join. We establish the complexity of Boolean conjunctive queries with intersection joins by a many-one equivalence to disjunctions of Boolean conjunctive queries with equality joins. The complexity of any query with intersection joins is that of the hardest query with equality joins in the disjunction exhibited by our equivalence. This is captured by a new width measure called the IJ-width. We also introduce a new syntactic notion of acyclicity called iota-acyclicity to characterise the class of Boolean queries with intersection joins that admit linear time computation modulo a poly-logarithmic factor in the data size. Iota-acyclicity is for intersection joins what alpha-acyclicity is for equality joins. It strictly sits between gamma-acyclicity and Berge-acyclicity. The intersection join queries that are not iota-acyclic are at least as hard as the Boolean triangle query with equality joins, which is widely considered not computable in linear time
    • ā€¦
    corecore