28 research outputs found

    Erasure Insertion in RS-Coded SFH MFSK Subjected to Tone Jamming and Rayleigh Fading

    No full text
    The achievable performance of Reed Solomon (RS) coded slow frequency hopping (SFH) assisted M-ary frequency shift keying (MFSK) using various erasure insertion (EI) schemes is investigated, when communicating over uncorrelated Rayleigh fading channels in the presence of multitone jamming. Three different EI schemes are considered, which are based on the output threshold test (OTT), on the ratio threshold test (RTT) and on the joint maximum output-ratio threshold test (MORTT). The relevant statistics of these EI schemes are investigated mathematically and based on these statistics, their performance is evaluated in the context of error-and-erasure RS decoding. It is demonstrated that the system performance can be significantly improved by using error-and-erasure decoding invoking the EI schemes considered. Index Terms—Tone jamming, OTT, RTT, MO-RTT, SFH, error-and-erasure decoding (EED)

    Transmit antenna selection in fading wireless communication systems

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 79-83).To address the drawbacks associated with multiple-input multiple-output (MIMO) systems, we propose the use of the transmit antenna selection technique. In transmit antenna selection, the best performing antenna(s) is selected from all the available transmit antennas for transmission. Transmit antenna selection reduces the number of radio frequency chains, and the system complexity while still achieving the goals of multiple antenna systems. In this thesis the performance of a MIMO system employing transmit antenna selection and maximal-ratiocombining is studied

    SECOND ORDER STATISTICS OF DUAL SELECTION DIVERSITY OVER CORRELATED WEIBULL FADING CHANNELS IN THE PRESENCE OF INTERFERENCE

    Get PDF
    In this paper, second order statistics of dual selection combining (SC) system applying desired signal decision algorithm are obtained for the case when that diversity system operates in Weibull interference-limited environment. Namely, a novel closed-form expression for outage probability (OP), necessary for an analysis of average fade duration (AFD), in the term of Meijer’s G-function is derived for general case in which desired signal and cochannel interference (CCI) are exposed to fading with different severities. Depending on fading environment, semi-analytical and analytical expressions for average lever crossing rate (LCR) are obtained, too. Numerical results are presented to accomplish proposed mathematical analysis and to examine the effects of system and channel parameters on concerned quantities

    PERFORMANCE COMPARISON OF DUAL-BRANCH AND TRIPLE-BRANCH SELECTION DIVERSITY RECEIVER BASED ON DESIRED SIGNAL ALGORITHM OVER CORRELATED WEIBULL FADING CHANNELS

    Get PDF
    As an important performance measure, in this paper the outage probability of dual- and triple-branch selection combining (SC) diversity system is compared. The analyzed system works over correlated Weibull fading channels in the presence of cochannel interference (CCI) where the output signal choice is done using desired signal algorithm. Results are graphically presented showing the influence of number of diversity branches, correlation coefficient and ratio of average powers of desired and interference signal

    PERFORMANCE ANALYSIS OF DUAL-BRANCH SELECTION DIVERSITY SYSTEM USING NOVEL MATHEMATICAL APPROACH

    Get PDF
    In this paper, novel mathematical approach for evaluation of probability density function (PDF) of instantaneous signal-to-interference ratio (SIR) at the receiver output in interference-limited environment is proposed. Dual-branch selection combining (SC) receiver operating over correlated Weibull fading channels applying SIR algorithm is considered. Analytical expression for joint PDF of desired signal and interference at the receiver output is derived and used for evaluation of PDF of instantaneous SIR. The expression for PDF of SIR is used for system performance analysis via outage probability, average bit error probability (ABEP) and average output SIR as system performance measures. Numerical results are graphically presented showing the effects of fading severity, average SIR at the input and level of correlation on the diversity receiver performance. In addition, results obtained for the PDF of instantaneous SIR in this paper, are compared to the results when the PDF of instantaneous SIR is directly calculated

    Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel

    Get PDF
    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods

    On the Performance Analysis of Wireless Receiver in Cascaded Fading Channel

    Full text link
    In this paper, we provide a unified analysis for wireless system over cascaded fading channels modeled either by cascaded Nakagami-m or Weibull fading models. These cascade fading models are developed by the product of independent Nakagami-m or Weibull random variables, which are not necessary identically distributed. The performance measures such as amount of fading, average bit error rate, and signal outage are computed in this analysis. We first use the Padé approximation (PA) technique to find simple to evaluate rational expressions for the moment generating function (MGF) of output signal-to-noise ratio (SNR), unlike previously derived intricate expressions in terms of MeijerG function for cascaded Nakagami-m fading channel. Rational expressions for the MGF of the cascaded Weibull random variable are also computed to provide new set of performance results. Using these rational expressions, we analyze the performance of wireless receivers under a range of representative channel fading conditions using both cascaded fading models. To verify the correctness of the proposed rational expression formulation numerical and computer simulations has been done, which shows perfect match
    corecore