1,935 research outputs found

    What is quantum in quantum randomness?

    Full text link
    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of "What is quantum in quantum randomness", i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to answer. In a first part, we explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programs inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyze quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness opened in the emerging field of quantum thermodynamics.Comment: This article will appear in Philosophical Transaction A, following the Royal Society Symposium "Foundations of quantum mechanics and their impact on Contemporary Society

    A Stronger Theorem Against Macro-realism

    Full text link
    Macro-realism is the position that certain "macroscopic" observables must always possess definite values: e.g. the table is in some definite position, even if we don't know what that is precisely. The traditional understanding is that by assuming macro-realism one can derive the Leggett-Garg inequalities, which constrain the possible statistics from certain experiments. Since quantum experiments can violate the Leggett-Garg inequalities, this is taken to rule out the possibility of macro-realism in a quantum universe. However, recent analyses have exposed loopholes in the Leggett-Garg argument, which allow many types of macro-realism to be compatible with quantum theory and hence violation of the Leggett-Garg inequalities. This paper takes a different approach to ruling out macro-realism and the result is a no-go theorem for macro-realism in quantum theory that is stronger than the Leggett-Garg argument. This approach uses the framework of ontological models: an elegant way to reason about foundational issues in quantum theory which has successfully produced many other recent results, such as the PBR theorem.Comment: Accepted journal version. 10 + 7 pages, 1 figur

    Realism about the Wave Function

    Get PDF
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review and compare several realist interpretations of the wave function. They fall into three categories: ontological interpretations, nomological interpretations, and the \emph{sui generis} interpretation. For simplicity, I will focus on non-relativistic quantum mechanics.Comment: Penultimate version for Philosophy Compas

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    The Minimal Modal Interpretation of Quantum Theory

    Get PDF
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes, but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory asserts that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the case of open quantum systems as well. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure---which we call subsystem space---that we believe merits further study. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text.Comment: 73 pages + references, 9 figures; cosmetic changes, added figure, updated references, generalized conditional probabilities with attendant changes to the sections on the EPR-Bohm thought experiment and Lorentz invariance; for a concise summary, see the companion letter at arXiv:1405.675

    The Role of Normware in Trustworthy and Explainable AI

    Get PDF
    For being potentially destructive, in practice incomprehensible and for the most unintelligible, contemporary technology is setting high challenges on our society. New conception methods are urgently required. Reorganizing ideas and discussions presented in AI and related fields, this position paper aims to highlight the importance of normware--that is, computational artifacts specifying norms--with respect to these issues, and argues for its irreducibility with respect to software by making explicit its neglected ecological dimension in the decision-making cycle
    • …
    corecore