545 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Epistemic systems and Flagg and Friedman's translation

    Full text link
    In 1986, Flagg and Friedman \cite{ff} gave an elegant alternative proof of the faithfulness of G\"{o}del (or Rasiowa-Sikorski) translation (⋅)□(\cdot)^\Box of Heyting arithmetic HA\bf HA to Shapiro's epistemic arithmetic EA\bf EA. In \S 2, we shall prove the faithfulness of (⋅)□(\cdot)^\Box without using stability, by introducing another translation from an epistemic system to corresponding intuitionistic system which we shall call \it the modified Rasiowa-Sikorski translation\rm . That is, this introduction of the new translation simplifies the original Flagg and Friedman's proof. In \S 3, we shall give some applications of the modified one for the disjunction property (DP\mathsf{DP}) and the numerical existence property (NEP\mathsf{NEP}) of Heyting arithmetic. In \S 4, we shall show that epistemic Markov's rule EMR\mathsf{EMR} in EA\bf EA is proved via HA\bf HA. So EA\bf EA ⊢EMR\vdash \mathsf{EMR} and HA\bf HA ⊢MR\vdash \mathsf{MR} are equivalent. In \S 5, we shall give some relations among the translations treated in the previous sections. In \S 6, we shall give an alternative proof of Glivenko's theorem. In \S 7, we shall propose several(modal-)epistemic versions of Markov's rule for Horsten's modal-epistemic arithmetic MEA\bf MEA. And, as in \S 4, we shall study some meta-implications among those versions of Markov's rules in MEA\bf MEA and one in HA\bf HA. Friedman and Sheard gave a modal analogue FS\mathsf{FS} (i.e. Theorem in \cite{fs}) of Friedman's theorem F\mathsf{F} (i.e. Theorem 1 in \cite {friedman}): \it Any recursively enumerable extension of HA\bf HA which has DP\mathsf{DP} also has NPE\mathsf{NPE}\rm . In \S 8, we shall give a proof of our \it Fundamental Conjecture \rm FC\mathsf{FC} proposed in Inou\'{e} \cite{ino90a} as follows: FC:FS⟹F.\mathsf{FC}: \enspace \mathsf{FS} \enspace \Longrightarrow \enspace \mathsf{F}. This is a new type of proofs. In \S 9, I shall give discussions.Comment: 33 page

    Implicit and Explicit Stances in Logic

    Get PDF

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Inferentialism

    Get PDF
    This article offers an overview of inferential role semantics. We aim to provide a map of the terrain as well as challenging some of the inferentialist’s standard commitments. We begin by introducing inferentialism and placing it into the wider context of contemporary philosophy of language. §2 focuses on what is standardly considered both the most important test case for and the most natural application of inferential role semantics: the case of the logical constants. We discuss some of the (alleged) benefits of logical inferentialism, chiefly with regards to the epistemology of logic, and consider a number of objections. §3 introduces and critically examines the most influential and most fully developed form of global inferentialism: Robert Brandom’s inferentialism about linguistic and conceptual content in general. Finally, in §4 we consider a number of general objections to IRS and consider possible responses on the inferentialist’s behalf

    Topic-Sensitive Epistemic 2D Truthmaker ZFC and Absolute Decidability

    Get PDF
    This paper aims to contribute to the analysis of the nature of mathematical modality, and to the applications of the latter to unrestricted quantification and absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority and relation between epistemic mathematical modality and metaphysical mathematical modality. The discrepancy between the modal systems governing the parameters in the two-dimensional intensional setting provides an explanation of the difference between the metaphysical possibility of absolute decidability and our knowledge thereof. I also advance an epistemic two-dimensional truthmaker semantics, if hyperintenisonal approaches are to be preferred to possible worlds semantics. I examine the relation between epistemic truthmakers and epistemic set theory

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Mathematical Logic: Proof theory, Constructive Mathematics

    Get PDF
    The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” was centered around proof-theoretic aspects of current mathematics, constructive mathematics and logical aspects of computational complexit

    A Substructural Epistemic Resource Logic: Theory and Modelling Applications

    Full text link
    We present a substructural epistemic logic, based on Boolean BI, in which the epistemic modalities are parametrized on agents' local resources. The new modalities can be seen as generalizations of the usual epistemic modalities. The logic combines Boolean BI's resource semantics --- we introduce BI and its resource semantics at some length --- with epistemic agency. We illustrate the use of the logic in systems modelling by discussing some examples about access control, including semaphores, using resource tokens. We also give a labelled tableaux calculus and establish soundness and completeness with respect to the resource semantics
    • …
    corecore