50 research outputs found

    Image-Based Visual Servoing for Nonholonomic Mobile Robots Using Epipolar Geometry

    Full text link

    Intuitive human interactive with an arm robot for severely handicapped people - A one click approach.

    Get PDF
    International audienceAssistance to disabled people is still a domain in which a lot of progress needs to be done. The more severe the handicap is, more complex are the devices, implying increased efforts to simplify the interactions between man and these devices. In this document we propose a solution to reduce the interaction between a user and a robotic arm. The system is equipped with two cameras. One is fixed on the top of the wheelchair (eye-to-hand) and the other one is mounted on the end effector of the robotic arm (eye-in-hand). The two cameras cooperate to reduce the grasping task to one click. The method is generic, it does not require marks on the object, geometrical model or the database. It thus provides a tool applicable to any kind of graspable object. The paper first gives an overview of the existing grasping tools for disabled people and proposes a novel approach toward an intuitive human machine interaction

    Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model

    Full text link
    We consider the problem of bearing-based visual homing: Given a mobile robot which can measure bearing directions with respect to known landmarks, the goal is to guide the robot toward a desired "home" location. We propose a control law based on the gradient field of a Lyapunov function, and give sufficient conditions for global convergence. We show that the well-known Average Landmark Vector method (for which no convergence proof was known) can be obtained as a particular case of our framework. We then derive a sliding mode control law for a unicycle model which follows this gradient field. Both controllers do not depend on range information. Finally, we also show how our framework can be used to characterize the sensitivity of a home location with respect to noise in the specified bearings. This is an extended version of the conference paper [1].Comment: This is an extender version of R. Tron and K. Daniilidis, "An optimization approach to bearing-only visual homing with applications to a 2-D unicycle model," in IEEE International Conference on Robotics and Automation, 2014, containing additional proof

    Weakly Calibrated Stereoscopic Visual Servoing for Laser Steering: Application to Phonomicrosurgery.

    No full text
    International audienceThis paper deals with the study of a weakly calibrated multiview visual servoing control law for microrobotic laser phonomicrosurgery of the vocal folds. It consists of the development of an endoluminal surgery system for laserablation and resection of cancerous tissues. More specifically, this paper focuses on the part concerning the control of the laser spot displacement during surgical interventions. To perform this, a visual control law based on trifocal geometry is designed using two cameras and a laser source (virtual camera). The method is validated on a realistic testbench and the straight point-to-point trajectories are demonstrated

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors

    Omnidirectional Vision Based Topological Navigation

    Get PDF
    Goedemé T., Van Gool L., ''Omnidirectional vision based topological navigation'', Mobile robots navigation, pp. 172-196, Barrera Alejandra, ed., March 2010, InTech.status: publishe
    corecore