114 research outputs found

    Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends

    Get PDF
    Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks

    Seizure prediction : ready for a new era

    Get PDF
    Acknowledgements: The authors acknowledge colleagues in the international seizure prediction group for valuable discussions. L.K. acknowledges funding support from the National Health and Medical Research Council (APP1130468) and the James S. McDonnell Foundation (220020419) and acknowledges the contribution of Dean R. Freestone at the University of Melbourne, Australia, to the creation of Fig. 3.Peer reviewedPostprin

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    Multivariate multiscale complexity analysis

    No full text
    Established dynamical complexity analysis measures operate at a single scale and thus fail to quantify inherent long-range correlations in real world data, a key feature of complex systems. They are designed for scalar time series, however, multivariate observations are common in modern real world scenarios and their simultaneous analysis is a prerequisite for the understanding of the underlying signal generating model. To that end, this thesis first introduces a notion of multivariate sample entropy and thus extends the current univariate complexity analysis to the multivariate case. The proposed multivariate multiscale entropy (MMSE) algorithm is shown to be capable of addressing the dynamical complexity of such data directly in the domain where they reside, and at multiple temporal scales, thus making full use of all the available information, both within and across the multiple data channels. Next, the intrinsic multivariate scales of the input data are generated adaptively via the multivariate empirical mode decomposition (MEMD) algorithm. This allows for both generating comparable scales from multiple data channels, and for temporal scales of same length as the length of input signal, thus, removing the critical limitation on input data length in current complexity analysis methods. The resulting MEMD-enhanced MMSE method is also shown to be suitable for non-stationary multivariate data analysis owing to the data-driven nature of MEMD algorithm, as non-stationarity is the biggest obstacle for meaningful complexity analysis. This thesis presents a quantum step forward in this area, by introducing robust and physically meaningful complexity estimates of real-world systems, which are typically multivariate, finite in duration, and of noisy and heterogeneous natures. This also allows us to gain better understanding of the complexity of the underlying multivariate model and more degrees of freedom and rigor in the analysis. Simulations on both synthetic and real world multivariate data sets support the analysis

    Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers

    Get PDF
    IntroductionIn the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement.MethodsThis study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA).ResultsBy analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification.DiscussionIn addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well

    Neurotechnology and Psychiatric Biomarkers

    Get PDF

    Analysis of the propagation of uterine electrical activity applied to predict preterm labor

    Get PDF
    There are many open questions concerning the functioning of the human uterus. One of these open questions concerns exactly how the uterus operates as an organ to perform the very organized act of contracting in a synchronized fashion to expulse a new human into this world. If we don‟t understand how it works when it is working normally, it is obvious that we will not be as capable of intervening or preventing when, sometimes with tragic consequences, it does not do its job properly and a child is born before it is ready. The aim of our research is to be able to understand what the electrical activity of the uterus can tell us about the risk of premature birth, to understand better how the uterus works and to benefit from these understanding to find tool that can be used for labor detection and prediction of preterm labor. This idea of using the externally detected electrical activity of the uterus (electrohysterogram or EHG) to predict preterm labor is not new and lot of work has already been put into it. The novel approach in this work is not to use the signal collected from one or two isolated places on the expectant mother‟s abdomen but to map the propagation of the signals and to investigate the auto organization of the contractions. We therefore use a matrix of electrodes to give us a much more complete picture of the organization and operation of the uterus as pregnancy reaches its conclusion. Labor is the physiologic process by which a fetus is expelled from the uterus to the outside world and is defined as regular uterine contractions accompanied by cervical effacement and dilatation. In the normal labor, the uterine contractions and cervix dilatation are preceded by biochemical changes in the cervical connective tissue.Il reste beaucoup de questions ouvertes concernant le fonctionnement de l'utérus humain. L'une de ces questions est comment l'utérus fonctionne en tant qu‟organe organisé pour générer une contraction synchrone et expulser un nouvel être humain dans ce monde ? Si nous ne comprenons pas comment l‟utérus fonctionne, quand il fonctionne normalement, il est évident que nous ne serons pas en mesure d'intervenir ou de prévoir quand, avec parfois des conséquences tragiques, il ne fait pas son travail correctement et qu‟un enfant nait avant d‟être prêt ! Le but de notre recherche est de comprendre ce que l'activité électrique de l'utérus peut nous apporter sur la prévention du risque de naissance prématurée, de mieux comprendre comment fonctionne l'utérus et de bénéficier de ces connaissances pour développer un outil qui peut être utilisé pour la détection de l‟accouchement et la prédiction du travail prématuré. Cette idée d'utiliser l'activité électrique détectée à la surface de l‟abdomen (ou électrohystérogramme EHG) pour prédire un accouchement prématuré n'est pas nouvelle et beaucoup de travaux ont déjà été mis en oeuvre. La nouvelle approche dans ce travail n‟est pas d‟utiliser le signal recueilli par un ou deux endroits isolés sur l'abdomen de la future mère, mais de cartographier la propagation des signaux et d‟explorer l'auto organisation des contractions. Nous utilisons donc une matrice d'électrodes pour nous donner une image beaucoup plus complète de l'organisation et du fonctionnement de l'utérus. L‟accouchement est le processus physiologique par lequel le foetus est expulsé de l'utérus vers le monde extérieur. Il est défini comme la survenue de contractions utérines régulières accompagnées de l'effacement du col et de la dilatation cervicale. Dans le travail normal, les contractions de l'utérus et la dilatation du col sont précédées par des changements biochimiques du tissu conjonctif du col utérin

    Etude de la propagation de l‟activité électrique utérine dans une optique clinique : Application a la détection des menaces d‟accouchement prématuré

    Get PDF
    Uterine contractions are essentially controlled by two physiological phenomena: cell excitability and propagation of uterine electrical activity probably related to high and low frequencies of uterine electromyogram, called electrohysterogram -EHG-, respectively. All previous studies have been focused on extracting parameters from the high frequency part and did not show a satisfied potential for clinical application. The objective of this thesis is the analysis of the propagation EHG signals of during pregnancy and labor in the view of extracting tool for clinical application. A novelty of our thesis is the multichannel recordings by using 4x4 electrodes matrix posed on the woman abdomen. Monovariate analysis was aimed to investigate the nonlinear characteristics of EHG signals. Bivariate and multivariate analyses have been done to analyze the propagation of the EHG signals by detecting the connectivity between the signals. An increase of the nonlinearity associated by amplitude synchronization and phase desynchronization were detected. Results indicate a highest EHG propagation during labor than pregnancy and an increase of this propagation with the week of gestations. The results show the high potential of propagation‟s parameters in clinical point of view such as labor detection and then preterm labor prediction. We proposed novel combination of Blind Source Separation and empirical mode decomposition to denoise monopolar EHG as a possible way to increase the classification rate of pregnancy and labor.Les contractions utérines sont contrôlées par deux phénomènes physiologiques: l'excitabilité cellulaire et la propagation de l'activité électrique utérine probablement liées aux hautes et basses fréquences de l‟electrohysterograme (EHG) respectivement. Toutes les études précédentes ont porté sur l'extraction de paramètres de la partie haute fréquence et n'ont pas montré un potentiel satisfait pour l'application clinique. L'objectif de cette thèse est l'analyse de propagation de l'EHG pendant la grossesse et le travail dans la vue de l'extraction des outils pour une application clinique. Une des nouveautés de la thèse est l‟enregistrement multicanaux à l'aide d‟une matrice d'électrodes 4x4 posée sur l'abdomen de la femme. Analyse monovariés visait à étudier les caractéristiques non linéaires des signaux EHG, analyses bivariées et multivariées ont été effectuées pour analyser la propagation des signaux EHG par la détection de la connectivité entre les signaux. Une augmentation de la non- linéarité associée par une synchronisation en amplitude et de désynchronisation en phase a été détectée. Les résultats indiquent plus de propagation au cours du travail que la grossesse et une augmentation de cette propagation avec les semaines de gestations. Les résultats montrent le potentiel élevé de paramètres de propagation dans le point de vue clinique tel que la détection du travail et de prédiction du travail prématuré. Finalement, nous avons proposé une nouvelle combinaison entre Séparation Aveugles de Sources et la Décomposition en Modes Empiriques pour débruiter les signaux EHG monopolaires comme un moyen possible d'augmenter le taux de classification de signaux grossesse et l'accouchement

    Etude de la propagation de l’activité électrique utérine dans une optique clinique: Application à la détection des menaces d’accouchement prématuré.

    Get PDF
    Uterine contractions are essentially controlled by two physiological phenomena: cell excitability and propagation of uterine electrical activity probably related to high and low frequencies of uterine electromyogram, called electrohysterogram -EHG-, respectively. All previous studies have been focused on extracting parameters from the high frequency part and did not show a satisfied potential for clinical application. The objective of this thesis is the analysis of the propagation EHG signals of during pregnancy and labor in the view of extracting tool for clinical application. A novelty of our thesis is the multichannel recordings by using 4x4 electrodes matrix posed on the woman abdomen. Monovariate analysis was aimed to investigate the nonlinear characteristics of EHG signals. Bivariate and multivariate analyses have been done to analyze the propagation of the EHG signals by detecting the connectivity between the signals. An increase of the nonlinearity associated by amplitude synchronization and phase desynchronization were detected. Results indicate a highest EHG propagation during labor than pregnancy and an increase of this propagation with the week of gestations. The results show the high potential of propagation’s parameters in clinical point of view such as labor detection and then preterm labor prediction. We proposed novel combination of Blind Source Separation and empirical mode decomposition to denoise monopolar EHG as a possible way to increase the classification rate of pregnancy and labor.Les contractions utérines sont contrôlées par deux phénomènes physiologiques: l'excitabilité cellulaire et la propagation de l'activité électrique utérine probablement liées aux hautes et basses fréquences de l’electrohysterograme (EHG) respectivement. Toutes les études précédentes ont porté sur l'extraction de paramètres de la partie haute fréquence et n'ont pas montré un potentiel satisfait pour l'application clinique. L'objectif de cette thèse est l'analyse de propagation de l'EHG pendant la grossesse et le travail dans la vue de l'extraction des outils pour une application clinique. Une des nouveautés de la thèse est l’enregistrement multicanaux à l'aide d’une matrice d'électrodes 4x4 posée sur l'abdomen de la femme. Analyse monovariés visait à étudier les caractéristiques non linéaires des signaux EHG, analyses bivariées et multivariées ont été effectuées pour analyser la propagation des signaux EHG par la détection de la connectivité entre les signaux. Une augmentation de la non-linéarité associée par une synchronisation en amplitude et de désynchronisation en phase a été détectée. Les résultats indiquent plus de propagation au cours du travail que la grossesse et une augmentation de cette propagation avec les semaines de gestations. Les résultats montrent le potentiel élevé de paramètres de propagation dans le point de vue clinique tel que la détection du travail et de prédiction du travail prématuré. Finalement, nous avons proposé une nouvelle combinaison entre Séparation Aveugles de Sources et la Décomposition en Modes Empiriques pour débruiter les signaux EHG monopolaires comme un moyen possible d'augmenter le taux de classification de signaux grossesse et l'accouchement
    • …
    corecore