384 research outputs found

    A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models

    Full text link
    We propose a novel Coupled Hidden Markov Model to detect epileptic seizures in multichannel electroencephalography (EEG) data. Our model defines a network of seizure propagation paths to capture both the temporal and spatial evolution of epileptic activity. To address the intractability introduced by the coupled interactions, we derive a variational inference procedure to efficiently infer the seizure evolution from spectral patterns in the EEG data. We validate our model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate that our model outperforms three baseline approaches which rely on a classical detection framework. Our model also demonstrates the potential to localize seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding

    A prediction approach for multichannel EEG signals modeling using local wavelet SVM

    Get PDF
    Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal. © 2006 IEEE.published_or_final_versio

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    A machine learning system for automated whole-brain seizure detection

    Get PDF
    Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 30 years. Electroencephalograms have been integral to these studies, as the recordings that they produce can capture the brain’s electrical signals. The diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. However, electroencephalogram capture and interpretation is time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity generalised across different regions of the brain and across multiple subjects may be a solution. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 342 records (171 seizures and 171 non-seizures). Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier

    Pre-Ictal Phase Detection with SVMs

    Get PDF
    Over 50 million persons worldwide are affected by epilepsy. Epilepsy is a brain disorder known for sudden, unexpected transitions from normal to pathological behavioral states called epileptic seizures. Epilepsy poses a significant burden to society due to associated healthcare cost to treat and control the unpredictable and spontaneous occurrence of seizures. There is a need for a quick screening process that could help neurologist diagnose and determine the patient’s treatment. Electroencephalogram has been traditionally used to diagnose patients by evaluating those brain functions that may correspond to epilepsy. The objective of this paper is to implement a novel detection technique of pre-ictal state that announces epileptic seizures from the online EEG data analysis. Unlike most published methods, that are aimed to distinguish only the normal from the epilepsy state, in this work the pre-ictal state is introduced as a new patient status, thus differentiating three possible states: normal (healthy), pre-ictal and epileptic seizure. In this manner, the patient should get timely alert about the possible seizure attack so that she/he can stop with its activities and take safety precautions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work is partially supported by the Ministry of Education and Science of Spain under contract TIN2010-16144 and Junta de Andalucía under contract TIC-1692

    Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients

    Get PDF
    This is the accepted manuscript version of the following article: Iosif Mporas, “Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients”, Expert Systems with Applications, Vol. 42(6), December 2014. The final published version is available at: http://www.sciencedirect.com/science/article/pii/S0957417414007763?via%3Dihub © 2014 Elsevier Ltd. All rights reserved.In this paper a seizure detector using EEG and ECG signals, as a module of a healthcare system, is presented. Specifically, the module is based on short-time analysis with time-domain and frequency-domain features and classification using support vector machines. The seizure detection module was evaluated on three subjects with diagnosed idiopathic generalized epilepsy manifested with absences. The achieved seizure detection accuracy was approximately 90% for all evaluated subjects. Feature ranking investigation and evaluation of the seizure detection module using subsets of features showed that the feature vector composed of approximately the 65%-best ranked parameters provides a good trade-off between computational demands and accuracy. This configurable architecture allows the seizure detection module to operate as part of a healthcare system in offline mode as well as in online mode, where real-time performance is needed.Peer reviewe
    corecore