470 research outputs found

    Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network

    Get PDF
    Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial pre-ictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patient's data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods

    Signal2Image Modules in Deep Neural Networks for EEG Classification

    Full text link
    Deep learning has revolutionized computer vision utilizing the increased availability of big data and the power of parallel computational units such as graphical processing units. The vast majority of deep learning research is conducted using images as training data, however the biomedical domain is rich in physiological signals that are used for diagnosis and prediction problems. It is still an open research question how to best utilize signals to train deep neural networks. In this paper we define the term Signal2Image (S2Is) as trainable or non-trainable prefix modules that convert signals, such as Electroencephalography (EEG), to image-like representations making them suitable for training image-based deep neural networks defined as `base models'. We compare the accuracy and time performance of four S2Is (`signal as image', spectrogram, one and two layer Convolutional Neural Networks (CNNs)) combined with a set of `base models' (LeNet, AlexNet, VGGnet, ResNet, DenseNet) along with the depth-wise and 1D variations of the latter. We also provide empirical evidence that the one layer CNN S2I performs better in eleven out of fifteen tested models than non-trainable S2Is for classifying EEG signals and we present visual comparisons of the outputs of the S2Is.Comment: 4 pages, 2 figures, 1 table, EMBC 201

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi
    corecore