173 research outputs found

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products

    Aerospace medicine and biology: A cumulative index to the continuing bibliography of the 1973 issues

    Get PDF
    A cumulative index to the abstracts contained in Supplements 112 through 123 of Aerospace Medicine and Biology A Continuing Bibliography is presented. It includes three indexes: subject, personal author, and corporate source

    Building And Validating Next-Generation Neurodevices Using Novel Materials, Fabrication, And Analytic Strategies

    Get PDF
    Technologies that enable scientists to record and modulate neural activity across spatial scales are advancing the way that neurological disorders are diagnosed and treated, and fueling breakthroughs in our fundamental understanding of brain function. Despite the rapid pace of technology development, significant challenges remain in realizing safe, stable, and functional interfaces between manmade electronics and soft biological tissues. Additionally, technologies that employ multimodal methods to interrogate brain function across temporal and spatial scales, from single cells to large networks, offer insights beyond what is possible with electrical monitoring alone. However, the tools and methodologies to enable these studies are still in their infancy. Recently, carbon nanomaterials have shown great promise to improve performance and multimodal capabilities of bioelectronic interfaces through their unique optical and electronic properties, flexibility, biocompatibility, and nanoscale topology. Unfortunately, their translation beyond the lab has lagged due to a lack of scalable assembly methods for incorporating such nanomaterials into functional devices. In this thesis, I leverage carbon nanomaterials to address several key limitations in the field of bioelectronic interfaces and establish scalable fabrication methods to enable their translation beyond the lab. First, I demonstrate the value of transparent, flexible electronics by analyzing simultaneous optical and electrical recordings of brain activity at the microscale using custom-fabricated graphene electronics. Second, I leverage a recently discovered 2D nanomaterial, Ti3C2 MXene, to improve the capabilities and performance of neural microelectronic devices. Third, I fabricate and validate human-scale Ti3C2 MXene epidermal electrode arrays in clinical applications. Leveraging the unique solution-processability of Ti3C2 MXene, I establish novel fabrication methods for both high-resolution microelectrode arrays and macroscale epidermal electrode arrays that are scalable and sufficiently cost-effective to allow translation of MXene bioelectronics beyond the lab and into clinical use. Thetechnologies and methodologies developed in this thesis advance bioelectronic technology for both research and clinical applications, with the goal of improving patient quality of life and illuminating complex brain dynamics across spatial scales

    Aerospace Medicine and Biology: Cumulative index, 1979

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source

    Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)

    Get PDF
    The scope of this Special Issue is to collect some of the contributions to the First International Electronic Conference on Biosensors, which was held to bring together well-known experts currently working in biosensor technologies from around the globe, and to provide an online forum for presenting and discussing new results. The world of biosensors is definitively a versatile and universally applicable one, as demonstrated by the wide range of topics which were addressed at the Conference, such as: bioengineered and biomimetic receptors; microfluidics for biosensing; biosensors for emergency situations; nanotechnologies and nanomaterials for biosensors; intra- and extracellular biosensing; and advanced applications in clinical, environmental, food safety, and cultural heritage fields

    Behavioral and synaptic circuit analysis in models of neuropsychiatric disorders: Dissecting the in vivo role of the postsynaptic density proteins nArgBP2 and Shank3 using genetic engineered mice

    Get PDF
    Dissertation presented to obtain the Ph.D degree in BiologyUnderstanding how discrete genes affect neuronal biology, synaptic function and, ultimately, behavior is a major goal in neuroscience. Not surprisingly, genes believed to be involved in human psychiatric and developmental brain disorders garner the most attention due to the likelihood that their disruption will promote salient changes in neurobiological functions. They also promise to nurture further understanding of relevant biomedical questions. Using the mouse as a model organism accelerates this discovery process because the species is amenable to manipulation at the genetic level, allowing for the orthologous recreation of human mutations. Simultaneously, our understanding of murine behavioral outputs can now be linked to particular endophenotypes reminiscent of human disorders.(...)Apoio financeiro da FCT e do FSE no âmbito do Quadro Comunitário de Apoio (SFRH/BD/15855-2005
    corecore