7,675 research outputs found

    Epidemic Variability in Hierarchical Geographical Networks with Human Activity Patterns

    Full text link
    Recently, some studies have revealed that non-Poissonian statistics of human behaviors stem from the hierarchical geographical network structure. On this view, we focus on epidemic spreading in the hierarchical geographical networks, and study how two distinct contact patterns (i. e., homogeneous time delay (HOTD) and heterogeneous time delay (HETD) associated with geographical distance) influence the spreading speed and the variability of outbreaks. We find that, compared with HOTD and null model, correlations between time delay and network hierarchy in HETD remarkably slow down epidemic spreading, and result in a upward cascading multi-modal phenomenon. Proportionately, the variability of outbreaks in HETD has the lower value, but several comparable peaks for a long time, which makes the long-term prediction of epidemic spreading hard. When a seed (i. e., the initial infected node) is from the high layers of networks, epidemic spreading is remarkably promoted. Interestingly, distinct trends of variabilities in two contact patterns emerge: high-layer seeds in HOTD result in the lower variabilities, the case of HETD is opposite. More importantly, the variabilities of high-layer seeds in HETD are much greater than that in HOTD, which implies the unpredictability of epidemic spreading in hierarchical geographical networks

    Optimizing surveillance for livestock disease spreading through animal movements

    Full text link
    The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems.Comment: Supplementary Information at https://sites.google.com/site/paolobajardi/Home/archive/optimizing_surveillance_ESM_l.pdf?attredirects=

    A statistical approach for studying urban human dynamics

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsThis doctoral dissertation proposed several statistical approaches to analyse urban dynamics with aiming to provide tools for decision making processes and urban studies. It assumed that human activity and human mobility compose urban dynamics. Initially, it studied geolocated social media data and considered them as a proxy for where and when people carry out what it is defined as the human activity. It employed techniques associated with generalised linear models, functional data analysis, hierarchical clustering, and epidemic data, to explain the spatio-temporal distribution of the places where people interact with their social networks. Afterwards, to understand the mobility in urban environments, data coming from an underground railway system were used. The information was considered repeated daily measurements to capture the regularity of human behaviour. By implementing methods from functional principal components data analysis and hierarchical clustering, it was possible to describe the system and identify human mobility patterns

    A Bayesian space-time model for discrete spread processes on a lattice

    Get PDF
    Funding for this work was provided by GEOIDE through the Government of Canada’s Networks for Centres of Excellence program.In this article we present a Bayesian Markov model for investigating environmental spread processes. We formulate a model where the spread of a disease over a heterogeneous landscape through time is represented as a probabilistic function of two processes: local diffusion and random-jump dispersal. This formulation represents two mechanisms of spread which result in highly peaked and long-tailed distributions of dispersal distances (i.e., local and long-distance spread), commonly observed in the spread of infectious diseases and biological invasions. We demonstrate the properties of this model using a simulation experiment and an empirical case study - the spread of mountain pine beetle in western Canada. Posterior predictive checking was used to validate the number of newly inhabited regions in each time period. The model performed well in the simulation study in which a goodness-of-fit statistic measuring the number of newly inhabited regions in each time interval fell within the 95% posterior predictive credible interval in over 97% of simulations. The case study of a mountain pine beetle infestation in western Canada (1999-2009) extended the base model in two ways. First, spatial covariates thought to impact the local diffusion parameters, elevation and forest cover, were included in the model. Second, a refined definition for translocation or jump-dispersal based on mountain pine beetle ecology was incorporated improving the fit of the model. Posterior predictive checks on the mountain pine beetle model found that the observed goodness-of-fit test statistic fell within the 95% posterior predictive credible interval for 8 out of 10. years. The simulation study and case study provide evidence that the model presented here is both robust and flexible; and is therefore appropriate for a wide range of spread processes in epidemiology and ecology.PostprintPeer reviewe

    Entropic measures of individual mobility patterns

    Full text link
    Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities

    Identifying target areas for risk-based surveillance and control of Transboundary Animal Diseases: A seasonal analysis of slaughter and live-trade cattle movements in Uganda

    Get PDF
    Abstract Animal movements are a major driver for the spread of Transboundary Animal Diseases (TADs). These movements link populations that would otherwise be isolated and hence create opportunities for susceptible and infected individuals to meet. We used social network analysis to describe the seasonal network structure of cattle movements in Uganda and unravel critical network features that identify districts or sub-regions for targeted risk-based surveillance and intervention. We constructed weighted, directed networks based on 2019 between-district cattle movements using official livestock mobility data; the purpose of the movement (‘slaughter’ vs. ‘live trade’) was used to subset the network and capture the risks more reliably. Our results show that cattle trade can result in local and long-distance disease spread in Uganda. Seasonal variability appears to impact the structure of the network, with high heterogeneity of node and edge activity identified throughout the seasons. These observations mean that the structure of the live trade network can be exploited to target influential district hubs within the cattle corridor and peripheral areas in the south and west, which would result in rapid network fragmentation, reducing the contact structure-related trade risks. Similar exploitable features were observed for the slaughter network, where cattle traffic serves mainly slaughter hubs close to urban centres along the cattle corridor. Critically, analyses that target the complex livestock supply value chain offer a unique framework for understanding and quantifying risks for TADs such as Foot-and-Mouth disease in a land-locked country like Uganda. These findings can be used to inform the development of risk-based surveillance strategies and decision making on resource allocation. For instance, vaccine deployment, biosecurity enforcement and capacity building for stakeholders at the local community and across animal health services with the potential to limit the socio-economic impact of outbreaks, or indeed reduce their frequency
    • …
    corecore