1,792 research outputs found

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification

    A functional limit theorem for locally perturbed random walks

    Full text link
    A particle moves randomly over the integer points of the real line. Jumps of the particle outside the membrane (a fixed "locally perturbating set") are i.i.d., have zero mean and finite variance, whereas jumps of the particle from the membrane have other distributions with finite means which may be different for different points of the membrane; furthermore, these jumps are mutually independent and independent of the jumps outside the membrane. Assuming that the particle cannot jump over the membrane we prove that the weak scaling limit of the particle position is a skew Brownian motion with parameter γ∈[−1,1]\gamma\in [-1,1]. The path of a skew Brownian motion is obtained by taking each excursion of a reflected Brownian motion, independently of the others, positive with probability 2−1(1+γ)2^{-1}(1+\gamma) and negative with probability 2−1(1−γ)2^{-1}(1-\gamma). To prove the weak convergence result we offer a new approach which is based on the martingale characterization of a skew Brownian motion. Among others, this enables us to provide the explicit formula for the parameter γ\gamma. In the previous articles the explicit formulae for the parameter have only been obtained under the assumption that outside the membrane the particle performs unit jumps.Comment: submitted, 12 page

    Shape-constrained Estimation of Value Functions

    Full text link
    We present a fully nonparametric method to estimate the value function, via simulation, in the context of expected infinite-horizon discounted rewards for Markov chains. Estimating such value functions plays an important role in approximate dynamic programming and applied probability in general. We incorporate "soft information" into the estimation algorithm, such as knowledge of convexity, monotonicity, or Lipchitz constants. In the presence of such information, a nonparametric estimator for the value function can be computed that is provably consistent as the simulated time horizon tends to infinity. As an application, we implement our method on price tolling agreement contracts in energy markets

    Convergence of a stochastic particle approximation for fractional scalar conservation laws

    Get PDF
    We give a probabilistic numerical method for solving a partial differential equation with fractional diffusion and nonlinear drift. The probabilistic interpretation of this equation uses a system of particles driven by L\'evy alpha-stable processes and interacting with their drift through their empirical cumulative distribution function. We show convergence to the solution for the associated Euler scheme

    On the Wiener disorder problem

    Full text link
    In the Wiener disorder problem, the drift of a Wiener process changes suddenly at some unknown and unobservable disorder time. The objective is to detect this change as quickly as possible after it happens. Earlier work on the Bayesian formulation of this problem brings optimal (or asymptotically optimal) detection rules assuming that the prior distribution of the change time is given at time zero, and additional information is received by observing the Wiener process only. Here, we consider a different information structure where possible causes of this disorder are observed. More precisely, we assume that we also observe an arrival/counting process representing external shocks. The disorder happens because of these shocks, and the change time coincides with one of the arrival times. Such a formulation arises, for example, from detecting a change in financial data caused by major financial events, or detecting damages in structures caused by earthquakes. In this paper, we formulate the problem in a Bayesian framework assuming that those observable shocks form a Poisson process. We present an optimal detection rule that minimizes a linear Bayes risk, which includes the expected detection delay and the probability of early false alarms. We also give the solution of the ``variational formulation'' where the objective is to minimize the detection delay over all stopping rules for which the false alarm probability does not exceed a given constant.Comment: Published in at http://dx.doi.org/10.1214/09-AAP655 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore