2,518 research outputs found

    On Revenue Maximization with Sharp Multi-Unit Demands

    Full text link
    We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2

    Quadratic Regularization of Unit-Demand Envy-Free Pricing Problems and Application to Electricity Markets

    Full text link
    We consider a profit-maximizing model for pricing contracts as an extension of the unit-demand envy-free pricing problem: customers aim to choose a contract maximizing their utility based on a reservation bill and multiple price coefficients (attributes). A classical approach supposes that the customers have deterministic utilities; then, the response of each customer is highly sensitive to price since it concentrates on the best offer. A second approach is to consider logit model to add a probabilistic behavior in the customers' choices. To circumvent the intrinsic instability of the former and the resolution difficulties of the latter, we introduce a quadratically regularized model of customer's response, which leads to a quadratic program under complementarity constraints (QPCC). This allows to robustify the deterministic model, while keeping a strong geometrical structure. In particular, we show that the customer's response is governed by a polyhedral complex, in which every polyhedral cell determines a set of contracts which is effectively chosen. Moreover, the deterministic model is recovered as a limit case of the regularized one. We exploit these geometrical properties to develop an efficient pivoting heuristic, which we compare with implicit or non-linear methods from bilevel programming. These results are illustrated by an application to the optimal pricing of electricity contracts on the French market.Comment: 37 pages, 9 figures; adding a section on the pricing of electricity contract

    Cooperation and equity in the river sharing problem

    Get PDF
    This paper considers environments in which several agents (countries, farmers, cities) share water from a river. Each agent enjoys a concave benefit function from consuming water up to a satiation level. Noncooperative extraction is typically inefficient and any group of agents can gain if they agree on how to allocate water with monetary compensations. The paper describes which allocations of water and money are acceptable to riparian agents according to core stability and several criteria of fairness. It reviews some theoretical results. It then discusses the implementation of the proposed allocation with negotiation rules and in water markets. Lastly, it provides some policy insights.WATER ALLOCATION;GAME;CORE;WATER MARKET;NEGOTIATION;RULES;EXTERNALITIES

    INSTITUTIONAL ARRANGEMENTS FOR MANAGING WATER CONFLICTS IN MINNESOTA

    Get PDF
    Resource /Energy Economics and Policy,

    Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs

    Full text link
    Consider the following problem. A seller has infinite copies of nn products represented by nodes in a graph. There are mm consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and kk-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that (1+ϵ)(1+\epsilon)-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a (1+ϵ)(1+\epsilon)-approximate solution to the original {\sf GVP} instance. On kk-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.Comment: Preprint of the paper to appear in Chicago Journal of Theoretical Computer Scienc
    • …
    corecore