253 research outputs found

    Environmental taxonomy of power scavenging techniques for autonomous self powered wireless sensors

    Get PDF
    Power is a critical issue in wireless sensor node, because in most of the applications it is difficult or in some cases impossible to replace or replenish the battery. This research surveys, summarizes and categorize the possible solutions to harvest required power of wireless sensor node from the working environment. Sensors are divided in different categories according to their application and working environment and possible solutions for harvesting energy in each category discussed. Furthermore with applying hybrid techniques sensor node will be able to supply its own power using environmental phenomenon and whatever it senses or have access to

    A Survey on RF Energy Harvesting-RFEH- in WSNs

    Get PDF
    International audienceLately, WSNs have attracted lot of attention due to their ubiquitous nature and their varied utilization in IOT, Cyber Physical Systems, and other emerging fields. The restricted energy related to wireless sensor networks is a considerable bottleneck of these networks. To surpass this serious limitation, the design and development of high performance and efficient energy harvesting systems for WSN environments are being inspected. We present a comprehensive taxonomy of the different energy harvesting sources that can be adopted by wireless sensor networks. We discuss also many freshly suggested energy prediction models that have the ability to boost the energy harvested in wireless sensor networks. To finish, we identify some of the challenges that still need to be addressed to develop cost-effective, efficient, and reliable energy harvesting systems for the WSN environment

    An Energy-autonomous Wireless Sensor Network Development Platform

    Get PDF
    Internet-of-things enabled applications are increasingly popular and are expected to spread even more in the next few years. Energy efficiency is fundamental to support the widespread use of such systems. This paper presents a practical framework for the development and the evaluation of low-power Wireless Sensor Networks equipped with energy harvesting, aiming at energy-autonomous applications. An experimental case study demonstrates the capabilities of the solution

    Energy Harvesting Techniques for Internet of Things (IoT)

    Get PDF
    The rapid growth of the Internet of Things (IoT) has accelerated strong interests in the development of low-power wireless sensors. Today, wireless sensors are integrated within IoT systems to gather information in a reliable and practical manner to monitor processes and control activities in areas such as transportation, energy, civil infrastructure, smart buildings, environment monitoring, healthcare, defense, manufacturing, and production. The long-term and self-sustainable operation of these IoT devices must be considered early on when they are designed and implemented. Traditionally, wireless sensors have often been powered by batteries, which, despite allowing low overall system costs, can negatively impact the lifespan and the performance of the entire network they are used in. Energy Harvesting (EH) technology is a promising environment-friendly solution that extends the lifetime of these sensors, and, in some cases completely replaces the use of battery power. In addition, energy harvesting offers economic and practical advantages through the optimal use of energy, and the provisioning of lower network maintenance costs. We review recent advances in energy harvesting techniques for IoT. We demonstrate two energy harvesting techniques using case studies. Finally, we discuss some future research challenges that must be addressed to enable the large-scale deployment of energy harvesting solutions for IoT environments

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Simulation of spiral-shaped mems human energy harvester using piezoelectric transduction

    Get PDF
    Energy harvesters are one of the focus areas in the field of research. The complex smart devices and miniaturized electronic design limit the use of traditional wired power source. The need for an efficient human energy harvester for such devices is growing exponentially every year due to an increase in the demand of energy sources and power requirement for the electronics. In the recent years, the trend of research is leading us to come up with a better solution of replacing the use of non-renewable energy with the renewable sources. Human energy harvesting technique has evolved as an efficient substitute to these. But there are few challenges in designing such energy harvesters. Firstly, obtaining higher efficiency. Moreover, since the efficiency is lower it is difficult to obtain enough energy considered to size. The goal is to model and simulate small scale energy harvester which harvests the ambient energy efficiently. There are several advantages of human energy harvester which make it beneficial, cost-effective and has grabbed the attention of researchers since past several years. In this thesis report, a human energy harvester has been designed in a 2-loop spiral design and simulated to obtain an efficient design using piezoelectric materials.Includes bibliographical reference

    ENERGY HARVESTING TECHNIQUES IN WIRELESS SENSOR NETWORKS

    Get PDF
    Batteries are the main source of energy for low-power electronics such as micro-electro mechanical systems (MEMS), wireless sensor networks, embedded devices for remote sensing and control, etc. With the limited capacity of finite power sources and the need for supplying energy for the lifetime of a system/device there is a requirement for self-powered devices. Using conventional batteries is not always good design solution because batteries require human intervention to replace them (very often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the electrical power, by using an alternative source of energy that is needed to operate these devices is a major concern. The process of extracting energy from the surrounding environment and converting it into consumable electrical energy is known as energy harvesting or power scavenging. The energy harvesting sources can be used to increase the lifetime and capability of the devices by either replacing or augmenting the battery usage. There are various forms of energy that can be scavenged, like solar, mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field of research related to energy harvesting. This paper represents a survey for identifying the sources of energy harvesting and describes the basic operation of principles of the most common energy harvester. As first, we present, in short, the conversion principles of single energy source harvesting systems and point to their benefits and limitations in their usage. After that, hybrid structures of energy harvesters which simultaneously combine scavenged power from different ambient sources (solar, thermoelectric, electromagnetic), with aim to support higher load at the output, are considered

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF
    corecore