8,096 research outputs found

    A geological and hydrogeological assessment of the electrical conductivity information from the HiRES airborne geophysical survey of the Isle of Wight

    Get PDF
    A recent high resolution airborne geophysical survey across the Isle of Wight (IoW) and Lymington area has provided the first electromagnetic data across the relatively young geological formations characterising much of southern England. The multi-frequency data provide information on bulk electrical conductivity to depths of the order of 100 m. A GIS-based assessment of the electrical conductivity information in relation to bedrock geological classification has been conducted for the first time. The analysis uses over 104,000 measurements across onshore IoW and has established average and statistical properties as a function of bedrock geology. The average values are used to provide baseline maps of apparent electrical conductivity and the variation with depth (measured as a function of frequency). The average conductivity as a function of depth within the main aquifer units is summarised. The data indicate that the majority of the Palaeogene is characterised by values consistently in excess of 100 mS/m and with a surprisingly high degree of spatial heterogeneity. The youngest (Oligocene) Hamstead Member displays some strong edge effects and the largest localized values in conductivity. The central Upper Chalk is associated with the lowest observed conductivity values and mineral content and/or porosity appears to increase with increasing age. The large central outcrop of the Lower Greensand Group, Ferruginous Sand Formation provides persistently low (<30 mS/m) conductivity values which imply a relatively uniform distribution of clean sand content. Non-geological (e.g. environmental) responses are contained within the data set and examples of these in relation to a closed municipal landfill and an area of potential coastal saline intrusion are discussed. In the south, the Gault clay/mudstone of the Early Cretaceous appears as a distinctive conductive unit. Cross sectional modelling of the data has been undertaken across the aquifer units of the Southern Downs. The results indicate that the Gault Formation, acting as an aquitard, can be traced as a distinct unit under the more resistive Early Cretaceous Upper Greensand and Late Cretaceous Chalk formations. The conductivity modelling should therefore allow an estimation of the subsurface configuration of the aquifer and aquitard units

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Get PDF
    The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.Fil: De Pooter, Daphnis. Flanders Marine Institute; BélgicaFil: Appeltans, Ward. UNESCO-IOC; BélgicaFil: Bailly, Nicolas. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Bristol, Sky. United States Geological Survey; Estados UnidosFil: Deneudt, Klaas. Flanders Marine Institute; BélgicaFil: Eliezer, Menashè. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Fujioka, Ei. University Of Duke. Nicholas School Of Environment. Duke Marine Lab; Estados UnidosFil: Giorgetti, Alessandra. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Goldstein, Philip. University of Colorado Museum of Natural History, OBIS; Estados UnidosFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Lipizer, Marina. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Mackay, Kevin. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Marin, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Moncoiffé, Gwenaëlle. British Oceanographic Data Center; Reino UnidoFil: Nikolopoulou, Stamatina. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Provoost, Pieter. UNESCO-IOC; BélgicaFil: Rauch, Shannon. Woods Hole Oceanographic Institution; Estados UnidosFil: Roubicek, Andres. CSIRO Oceans and Atmosphere; AustraliaFil: Torres, Carlos. Universidad Autonoma de Baja California Sur; MéxicoFil: van de Putte, Anton. Royal Belgian Institute for Natural Sciences; BélgicaFil: Vandepitte, Leen. Flanders Marine Institute; BélgicaFil: Vanhoorne, Bart. Flanders Marine Institute; BélgicaFil: Vinci, Mateo. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Wambiji, Nina. Kenya Marine and Fisheries Research Institute; KeniaFil: Watts, David. CSIRO Oceans and Atmosphere; AustraliaFil: Klein Salas, Eduardo. Universidad Simon Bolivar; VenezuelaFil: Hernandez, Francisco. Flanders Marine Institute; Bélgic

    Tracing sources of cadmium in agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a biotoxic heavy metal, which is accumulated by plants and animals and thereby enters the human food chain (Gray et al. 2003). The application of phosphate fertilisers has also resulted in the long-term accumulation of Cd in agricultural soils around the world, including New Zealand (NZ). In 1997, the main source of NZ phosphate fertilisers was changed from Nauru island phosphate rocks (450 mg Cd kg-1 P) to a variety of phosphate rocks with lower Cd concentrations, in order to meet more stringent Cd limits in P fertiliser. Following this change, the accumulation of Cd in topsoil samples from the Winchmore research farm (South Island, NZ) was evaluated and was found to have plateaued post-2000 (McDowell, 2012). In this study, stable isotope analysis was used to trace the fate of Cd in Winchmore farm soils in order to determine the cause of the plateau. The isotope ratio of Cd (δ114/110Cd) was measured in pre-2000 and post-2000 phosphate fertilisers, phosphate rocks, topsoil (0-7.5 cm) and control (unfertilised) subsoil (25-30 cm) samples from the Winchmore site. The analysed topsoil samples were archived samples collected over the period 1959-2015. The isotopic compositions of fertilised topsoils ranged from δ114/110Cd = 0.08 ± 0.03 to δ114/110Cd = 0.27 ± 0.04, which were comparable to pre-2000 fertilisers (δ114/110Cd = 0.10 ± 0.05 to 0.25 ± 0.04) but distinct from the post-2000 fertilisers (δ114/110Cd range of -0.17 ± 0.03 to 0.01 ± 0.05) and control subsoil (δ114/110Cd = -0.33 ± 0.04) (Salmanzadeh et al., 2017). We combined this stable isotope data with Bayesian modelling to estimate the contribution of different sources of Cd. An open source Bayesian isotope mixing model implemented in Matlab (Arendt et al., 2015) was used here with some modifications to estimate the fractional contribution of different sources of Cd through time including pre- and post-2000 fertilisers, and the control soil. The Matlab code of Arendt et al., 2015 was modified to consider only one isotope system (rather than two), and fewer sources. This modelling confirmed the dominant contribution (about 80%) of Nauru-derived (i.e. pre-2000) fertilisers in increasing the Cd concentration in Winchmore soils. To help constrain the soil Cd mass balance we used an existing model (CadBal) (Roberts and Longhurst, 2005), to estimate residual soil Cd and output fluxes based on known P fertiliser application rates, the initial Cd concentration, farm and soil type, and soil dry bulk density. We incorporated the isotope data into the mass balance expression in order to evaluate the performance of CadBal in estimating the past topsoil Cd accumulation and predicting the future concentrations and isotope ratios of Cd (up to 2030 AD). The results of mass balance modelling confirm that recent applications of phosphate fertilisers have not resulted in an accumulation of Cd during the most recent period, thus Cd removal by either leaching or crop uptake has increased, which is consistent with the modelled isotope data (Figure 1). We can conclude that it becomes possible to distinguish the sources of Cd within the soil using stable Cd isotopes (Imseng et al., 2018) and that the residual Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers (Salmanzadeh et al., 2017). One implication of this finding is that the contemporary applications of phosphate fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility, and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country. Figure 1. Results of Cd mass balance modelling in CadBal for the period of topsoil fertilisation including a prediction up to the year 2030 AD. (a) Mean concentration of Cd in the dryland treatment of Winchmore long-term irrigation trial (symbols) and the CadBal model (lines) outputs (red symbols = this study- plot 15 of Winchmore site; grey symbols = McDowell study-average of all plots; solid black line = dryland optimized CadBal from McDowell (2012) for all irrigation plots; black dashed line = Plot 15 dryland optimized CadBal-this study, first scenario; blue line = Plot 15 dryland optimized CadBal-this study, second scenario; red line = Plot 15 dryland optimized CadBal-this study, third scenario; red dashed line = Plot 15 dryland optimized CadBal-this study, fourth scenario); (b) Measured and modelled Cd isotope ratios based on CadBal outputs, isotope ratios measured in fertilisers and the fractionation factors of Wiggenhauser, et al. (2016); lines designate modelling scenarios as in (a), red dots are the third scenario with no fractionation (α factor not applied); (c) modeled scenario 3 (solid) and scenario 4 (dashed) isotope ratios in topsoil (red lines), leachate (blue lines) and pasture (green lines)

    Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    Get PDF
    A recent airborne TEM survey in the Machile-Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Omega m) in a low electrical resistivity (below 13 Omega m) background. The near surface (0-40 m depth range) electrical resistivity distribution of these anomalies appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geoelectrics and time domain induced polarisation to evaluate a freshwater lens across aflood plain on the northern bank of the Zambezi River at Kasaya in south western Zambia. Coincident TEM and CVES measurements were conducted across the Simalaha Plain from the edge of the Zambezi River up to 6.6 km inland. The resulting TEM, direct current and induced polarisation data sets were inverted using a new mutually and laterally constrained joint inversion scheme. The resulting inverse model sections depict a freshwater lens sitting on top of a regional saline aquifer. The fresh water lens is about 60 m thick at the boundary with the Zambezi River and gradually thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were also associated with other surface water features located in the airborne surveyed area

    Hydrogeophysical Characterization and Imaging in the Mangrove Lakes Region of Everglades National Park and Big Pine Key, Florida, USA

    Get PDF
    Coastal groundwater aquifers are susceptible to saltwater intrusion from natural and anthropogenic sources. Everglades National Park (ENP) has been adversely impacted by past human activities that altered freshwater flow through the system. In Big Pine Key (BPK), the flat and low-lying topography less than 2m makes the freshwater lens vulnerable to tidal and storm surge events. This study investigated different inversion scenarios and used Electrical Resistivity Tomography (ERT) and Electromagnetic (EM) survey to characterize the spatial and temporal change of the groundwater chemistry and image the aquifers. In Big Pine Key, Hurricane Irma made landfall as a category 4 storm with storm surge heights in excess of 2 m. The study compared ERT images along three profiles ranging between 220 and 280 m length collected in 2011 with post-storm data collected about 3 to 4 months (November 2017/January 2018) and 8 to 11 months (May/December 2018) after Irma. The post-storm data documented that the storm surge impacted the freshwater lens on all three profiles with low resistivity (i.e., high salinity) zones in the upper 2 m. These data showed 40 and 70 % recovery of the freshwater lens in May and December 2018 and most pronounced in the lower elevation of the profiles. In the Mangrove lakes of the Everglades, a constrained water depth (fixed water layer thickness) inversion model is selected as an effective inversion approach. In our study, we estimated a formation factor 10.7 with a standard deviation of 1.81 by comparing the bulk resistivity measured using a floating Dipole-Dipole array and coincident conductivity data from the wells. Between, 2016 to 2019, the spatial salinity variation on the lakes showed west to east increase in surface water salinity and west to east decrease in groundwater salinity. In addition, the salinity of the surface water and groundwater increased from North to South and suggested freshening of the groundwater and may reflect the effects of increased flow caused by restoration efforts

    Chesapeake Bay Bibliography Thesaurus

    Get PDF
    corecore