92 research outputs found

    Is Hot IT a False Economy? An Analysis of Server and Data Center Energy Efficiency as Temperatures Rise

    Get PDF
    As demand for digital services grows, there is need to improve efficiency and reduce the environmental impact of data centers. The largest energy consumer in any data center is the IT, followed by the systems dedicated to cooling. Aiming to improve efficiency, and driven by metrics like PUE, there is a trend towards running data centers hotter to reduce the cooling energy. There is little research investigating the effect this will have on the IT beyond failure rates. To ensure overall efficiency is improving, we must view the data center as a system of systems, taking a holistic view rather than focusing on individual sub-systems. In this paper we use industry standard benchmarks and a wind-tunnel to profile typical enterprise IT. We analyze the effect of environmental conditions on IT efficiency, showing minor increases in temperature or pressure impact the efficiency of servers. Using an idealized, simulated data center case study we show that the interaction between cooling systems, server behaviour and local climate are non-trivial and increasing temperatures has potential to worsen efficiency

    Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters

    Get PDF
    Recently, the energy-efficiency constraints have become the dominant limiting factor for datacenters due to their unprecedented increase of growing size and electrical power demands. In this chapter we explain the power and thermal modeling and control solutions which can play a key role to reduce the power consumption of datacenters considering time-varying workload characteristics while maintaining the performance requirements and the maximum temperature constraints. We first explain simple-yet-accurate power and temperature models for computing servers, and then, extend the model to cover computing servers and cooling infrastructure of datacenters. Second, we present the power and thermal management solutions for servers manipulating various control knobs such as voltage and frequency of servers, workload allocation, and even cooling capability, especially, flow rate of liquid cooled servers). Finally, we present the solution to minimize the server clusters of datacenters by proposing a solution which judiciously allocates virtual machines to servers considering their correlation, and then, the joint optimization solution which enables to minimize the total energy consumption of datacenters with hybrid cooling architecture (including the computing servers and the cooling infrastructure of datacenters)

    Investigating Emerging Security Threats in Clouds and Data Centers

    Get PDF
    Data centers have been growing rapidly in recent years to meet the surging demand of cloud services. However, the expanding scale of a data center also brings new security threats. This dissertation studies emerging security issues in clouds and data centers from different aspects, including low-level cooling infrastructures and different virtualization techniques such as container and virtual machine (VM). We first unveil a new vulnerability called reduced cooling redundancy that might be exploited to launch thermal attacks, resulting in severely worsened thermal conditions in a data center. Such a vulnerability is caused by the wide adoption of aggressive cooling energy saving policies. We conduct thermal measurements and uncover effective thermal attack vectors at the server, rack, and data center levels. We also present damage assessments of thermal attacks. Our results demonstrate that thermal attacks can negatively impact the thermal conditions and reliability of victim servers, significantly raise the cooling cost, and even lead to cooling failures. Finally, we propose effective defenses to mitigate thermal attacks. We then perform a systematic study to understand the security implications of the information leakage in multi-tenancy container cloud services. Due to the incomplete implementation of system resource isolation mechanisms in the Linux kernel, a spectrum of system-wide host information is exposed to the containers, including host-system state information and individual process execution information. By exploiting such leaked host information, malicious adversaries can easily launch advanced attacks that can seriously affect the reliability of cloud services. Additionally, we discuss the root causes of the containers\u27 information leakage and propose a two-stage defense approach. The experimental results show that our defense is effective and incurs trivial performance overhead. Finally, we investigate security issues in the existing VM live migration approaches, especially the post-copy approach. While the entire live migration process relies upon reliable TCP connectivity for the transfer of the VM state, we demonstrate that the loss of TCP reliability leads to VM live migration failure. By intentionally aborting the TCP connection, attackers can cause unrecoverable memory inconsistency for post-copy, significantly increase service downtime, and degrade the running VM\u27s performance. From the offensive side, we present detailed techniques to reset the migration connection under heavy networking traffic. From the defensive side, we also propose effective protection to secure the live migration procedure

    Self-organizing maps versus growing neural Gas in detecting anomalies in data centers

    Get PDF
    Reliability is one of the key performance factors in data centres. The out-of-scale energy costs of these facilities lead data centre operators to increase the ambient temperature of the data room to decrease cooling costs. However, increasing ambient temperature reduces the safety margins and can result in a higher number of anomalous events. Anomalies in the data centre need to be detected as soon as possible to optimize cooling efficiency and mitigate the harmful effects over servers. This article proposes the usage of clustering-based outlier detection techniques coupled with a trust and reputation system engine to detect anomalies in data centres. We show how self-organizing maps or growing neural gas can be applied to detect cooling and workload anomalies, respectively, in a real data centre scenario with very good detection and isolation rates, in a way that is robust to the malfunction of the sensors that gather server and environmental information

    Advanced Concepts for Renewable Energy Supply of Data Centres

    Get PDF
    The rapid increase of cloud computing, high performance computing (HPC) and the vast growth in Internet and Social Media use have aroused the interest in energy consumption and the carbon footprint of Data Centres. Data Centres primarily contain electronic equipment used for data processing (servers), data storage (storage equipment), and communications (network equipment). Collectively, this equipment processes, stores, and transmits digital information and is known as information technology (IT) equipment. Advanced Concepts for Renewable Energy Supply of Data Centres introduces a number of technical solutions for the supply of power and cooling energy into Data Centres with enhanced utilisation of renewable energy sources in order to achieve low energy Data Centres. Because of the high energy density nature of these unique infrastructures, it is essential to implement energy efficiency measures and reduce consumption before introducing any renewable energy source. A holistic approach is used with the objective of integrating many technical solutions such as management of the IT (Information Technology) load, efficient electrical supply to the IT systems, Low-Ex air-conditioning systems, interaction with district heating and cooling networks, re-use of heat, free cooling (air, seawater, groundwater), optimal use of heat and cold storage, electrical storage and integration in smart grids. This book is therefore a catalogue of advanced technical concepts that could be integrated into Data Centres portfolio in order to increase the overall efficiency and the share of renewable energies in power and cooling supply. Based on dynamic energy models implemented in TRNSYS some concepts are deeply evaluated through yearly simulations. The results of the simulation are illustrated with Sankey charts, where the energy flows per year within the subsystems of each concept for a selected scenario are shown, and graphs showing the results of parametric analysis. A set of environmental metrics (as the non-renewable primary energy) and financial metrics (CAPEX and OPEX) as well of energy efficiency metrics like the well-known PUE, are described and used to evaluate the different technical concepts

    Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)

    Full text link

    Energy-efficient Nature-Inspired techniques in Cloud computing datacenters

    Get PDF
    Cloud computing is a systematic delivery of computing resources as services to the consumers via the Internet. Infrastructure as a Service (IaaS) is the capability provided to the consumer by enabling smarter access to the processing, storage, networks, and other fundamental computing resources, where the consumer can deploy and run arbitrary software including operating systems and applications. The resources are sometimes available in the form of Virtual Machines (VMs). Cloud services are provided to the consumers based on the demand, and are billed accordingly. Usually, the VMs run on various datacenters, which comprise of several computing resources consuming lots of energy resulting in hazardous level of carbon emissions into the atmosphere. Several researchers have proposed various energy-efficient methods for reducing the energy consumption in datacenters. One such solutions are the Nature-Inspired algorithms. Towards this end, this paper presents a comprehensive review of the state-of-the-art Nature-Inspired algorithms suggested for solving the energy issues in the Cloud datacenters. A taxonomy is followed focusing on three key dimension in the literature including virtualization, consolidation, and energy-awareness. A qualitative review of each techniques is carried out considering key goal, method, advantages, and limitations. The Nature-Inspired algorithms are compared based on their features to indicate their utilization of resources and their level of energy-efficiency. Finally, potential research directions are identified in energy optimization in data centers. This review enable the researchers and professionals in Cloud computing datacenters in understanding literature evolution towards to exploring better energy-efficient methods for Cloud computing datacenters
    • …
    corecore