38 research outputs found

    Environment-Independent Task Specifications via GLTL

    Full text link
    We propose a new task-specification language for Markov decision processes that is designed to be an improvement over reward functions by being environment independent. The language is a variant of Linear Temporal Logic (LTL) that is extended to probabilistic specifications in a way that permits approximations to be learned in finite time. We provide several small environments that demonstrate the advantages of our geometric LTL (GLTL) language and illustrate how it can be used to specify standard reinforcement-learning tasks straightforwardly

    Temporal Logic Guided Safe Reinforcement Learning Using Control Barrier Functions

    Full text link
    Using reinforcement learning to learn control policies is a challenge when the task is complex with potentially long horizons. Ensuring adequate but safe exploration is also crucial for controlling physical systems. In this paper, we use temporal logic to facilitate specification and learning of complex tasks. We combine temporal logic with control Lyapunov functions to improve exploration. We incorporate control barrier functions to safeguard the exploration and deployment process. We develop a flexible and learnable system that allows users to specify task objectives and constraints in different forms and at various levels. The framework is also able to take advantage of known system dynamics and handle unknown environmental dynamics by integrating model-free learning with model-based planning

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Learning to Compose Skills

    Full text link
    We present a differentiable framework capable of learning a wide variety of compositions of simple policies that we call skills. By recursively composing skills with themselves, we can create hierarchies that display complex behavior. Skill networks are trained to generate skill-state embeddings that are provided as inputs to a trainable composition function, which in turn outputs a policy for the overall task. Our experiments on an environment consisting of multiple collect and evade tasks show that this architecture is able to quickly build complex skills from simpler ones. Furthermore, the learned composition function displays some transfer to unseen combinations of skills, allowing for zero-shot generalizations.Comment: Presented at NIPS 2017 Deep RL Symposiu

    Towards Sharing Task Environments to Support Reproducible Evaluations of Interactive Recommender Systems

    Full text link
    Beyond sharing datasets or simulations, we believe the Recommender Systems (RS) community should share Task Environments. In this work, we propose a high-level logical architecture that will help to reason about the core components of a RS Task Environment, identify the differences between Environments, datasets and simulations; and most importantly, understand what needs to be shared about Environments to achieve reproducible experiments. The work presents itself as valuable initial groundwork, open to discussion and extensions.Comment: Included in the Offline Evaluation for Recommender Systems Workshop (REVEAL'19), collocated with ACM RecSys 2019. REVEAL'19, September 20th, 2019, Copenhagen, Denmar

    Interactive Robot Training for Non-Markov Tasks

    Full text link
    Defining sound and complete specifications for robots using formal languages is challenging, while learning formal specifications directly from demonstrations can lead to over-constrained task policies. In this paper, we propose a Bayesian interactive robot training framework that allows the robot to learn from both demonstrations provided by a teacher, and that teacher's assessments of the robot's task executions. We also present an active learning approach -- inspired by uncertainty sampling -- to identify the task execution with the most uncertain degree of acceptability. Through a simulated experiment, we demonstrate that our active learning approach identifies a teacher's intended task specification with an equivalent or greater similarity when compared to an approach that learns purely from demonstrations. Finally, we demonstrate the efficacy of our approach in a real-world setting through a user-study based on teaching a robot to set a dinner table

    Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines

    Full text link
    Natural and formal languages provide an effective mechanism for humans to specify instructions and reward functions. We investigate how to generate policies via RL when reward functions are specified in a symbolic language captured by Reward Machines, an increasingly popular automaton-inspired structure. We are interested in the case where the mapping of environment state to a symbolic (here, Reward Machine) vocabulary -- commonly known as the labelling function -- is uncertain from the perspective of the agent. We formulate the problem of policy learning in Reward Machines with noisy symbolic abstractions as a special class of POMDP optimization problem, and investigate several methods to address the problem, building on existing and new techniques, the latter focused on predicting Reward Machine state, rather than on grounding of individual symbols. We analyze these methods and evaluate them experimentally under varying degrees of uncertainty in the correct interpretation of the symbolic vocabulary. We verify the strength of our approach and the limitation of existing methods via an empirical investigation on both illustrative, toy domains and partially observable, deep RL domains.Comment: NeurIPS Deep Reinforcement Learning Workshop 202

    Embedding Symbolic Temporal Knowledge into Deep Sequential Models

    Full text link
    Sequences and time-series often arise in robot tasks, e.g., in activity recognition and imitation learning. In recent years, deep neural networks (DNNs) have emerged as an effective data-driven methodology for processing sequences given sufficient training data and compute resources. However, when data is limited, simpler models such as logic/rule-based methods work surprisingly well, especially when relevant prior knowledge is applied in their construction. However, unlike DNNs, these "structured" models can be difficult to extend, and do not work well with raw unstructured data. In this work, we seek to learn flexible DNNs, yet leverage prior temporal knowledge when available. Our approach is to embed symbolic knowledge expressed as linear temporal logic (LTL) and use these embeddings to guide the training of deep models. Specifically, we construct semantic-based embeddings of automata generated from LTL formula via a Graph Neural Network. Experiments show that these learnt embeddings can lead to improvements in downstream robot tasks such as sequential action recognition and imitation learning

    Supervised Bayesian Specification Inference from Demonstrations

    Full text link
    When observing task demonstrations, human apprentices are able to identify whether a given task is executed correctly long before they gain expertise in actually performing that task. Prior research into learning from demonstrations (LfD) has failed to capture this notion of the acceptability of a task's execution; meanwhile, temporal logics provide a flexible language for expressing task specifications. Inspired by this, we present Bayesian specification inference, a probabilistic model for inferring task specification as a temporal logic formula. We incorporate methods from probabilistic programming to define our priors, along with a domain-independent likelihood function to enable sampling-based inference. We demonstrate the efficacy of our model for inferring specifications, with over 90% similarity observed between the inferred specification and the ground truth, both within a synthetic domain and during a real-world table setting task

    Verifiable and Compositional Reinforcement Learning Systems

    Full text link
    We propose a novel framework for verifiable and compositional reinforcement learning (RL) in which a collection of RL sub-systems, each of which learns to accomplish a separate sub-task, are composed to achieve an overall task. The framework consists of a high-level model, represented as a parametric Markov decision process (pMDP) which is used to plan and to analyze compositions of sub-systems, and of the collection of low-level sub-systems themselves. By defining interfaces between the sub-systems, the framework enables automatic decompositons of task specifications, e.g., reach a target set of states with a probability of at least 0.95, into individual sub-task specifications, i.e. achieve the sub-system's exit conditions with at least some minimum probability, given that its entry conditions are met. This in turn allows for the independent training and testing of the sub-systems; if they each learn a policy satisfying the appropriate sub-task specification, then their composition is guaranteed to satisfy the overall task specification. Conversely, if the sub-task specifications cannot all be satisfied by the learned policies, we present a method, formulated as the problem of finding an optimal set of parameters in the pMDP, to automatically update the sub-task specifications to account for the observed shortcomings. The result is an iterative procedure for defining sub-task specifications, and for training the sub-systems to meet them. As an additional benefit, this procedure allows for particularly challenging or important components of an overall task to be determined automatically, and focused on, during training. Experimental results demonstrate the presented framework's novel capabilities
    corecore