208 research outputs found

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Automatic Emotion Recognition from Mandarin Speech

    Get PDF

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Advanced system engineering approaches to dynamic modelling of human factors and system safety in sociotechnical systems

    Get PDF
    Sociotechnical systems (STSs) indicate complex operational processes composed of interactive and dependent social elements, organizational and human activities. This research work seeks to fill some important knowledge gaps in system safety performance and human factors analysis using in STSs. First, an in-depth critical analysis is conducted to explore state-of-the-art findings, needs, gaps, key challenges, and research opportunities in human reliability and factors analysis (HR&FA). Accordingly, a risk model is developed to capture the dynamic nature of different systems failures and integrated them into system safety barriers under uncertainty as per Safety-I paradigm. This is followed by proposing a novel dynamic human-factor risk model tailored for assessing system safety in STSs based on Safety-II concepts. This work is extended to further explore system safety using Performance Shaping Factors (PSFs) by proposing a systematic approach to identify PSFs and quantify their importance level and influence on the performance of sociotechnical systems’ functions. Finally, a systematic review is conducted to provide a holistic profile of HR&FA in complex STSs with a deep focus on revealing the contribution of artificial intelligence and expert systems over HR&FA in complex systems. The findings reveal that proposed models can effectively address critical challenges associated with system safety and human factors quantification. It also trues about uncertainty characterization using the proposed models. Furthermore, the proposed advanced probabilistic model can better model evolving dependencies among system safety performance factors. It revealed the critical safety investment factors among different sociotechnical elements and contributing factors. This helps to effectively allocate safety countermeasures to improve resilience and system safety performance. This research work would help better understand, analyze, and improve the system safety and human factors performance in complex sociotechnical systems

    Accurate RFID trilateration to learn and recognize spatial activities in smart environment

    Get PDF
    The rapid adoption of wireless communication and sensors technology has raised the awareness of many laboratories about the field of network embedded system. Most researchers aim to exploit these advances to enable technological assistance of frail persons in smart homes. However, to reach the full potential of applications using network embedded systems such as assistive smart home, scientists need to work toward the creation of support services. In this paper, we present an accurate passive RFID localization technique, which can easily be implemented and deployed in various environments, coupled to a complete human activity recognition model. The goal of this paper is to demonstrate, through concrete experiments, that support services can enable powerful solution to long-lived challenges of the network embedded system community. Particularly, the model exploits qualitative spatial reasoning from RFID localization of objects in the smart home to learn and recognize the basic and instrumental activities of daily living of a resident. Our system was deployed in a real smart home, and the results obtained were quite encouraging. The developed RFID technique gives an average precision of ±14.12 cm, and the recognition algorithm recognizes up to 92% activities

    Learning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation

    Get PDF
    This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference
    • …
    corecore