46,713 research outputs found

    Folding Deformable Objects using Predictive Simulation and Trajectory Optimization

    Full text link
    Robotic manipulation of deformable objects remains a challenging task. One such task is folding a garment autonomously. Given start and end folding positions, what is an optimal trajectory to move the robotic arm to fold a garment? Certain trajectories will cause the garment to move, creating wrinkles, and gaps, other trajectories will fail altogether. We present a novel solution to find an optimal trajectory that avoids such problematic scenarios. The trajectory is optimized by minimizing a quadratic objective function in an off-line simulator, which includes material properties of the garment and frictional force on the table. The function measures the dissimilarity between a user folded shape and the folded garment in simulation, which is then used as an error measurement to create an optimal trajectory. We demonstrate that our two-arm robot can follow the optimized trajectories, achieving accurate and efficient manipulations of deformable objects.Comment: 8 pages, 9 figures, Proceedings of IROS 201

    CloudAR: A Cloud-based Framework for Mobile Augmented Reality

    Full text link
    Computation capabilities of recent mobile devices enable natural feature processing for Augmented Reality (AR). However, mobile AR applications are still faced with scalability and performance challenges. In this paper, we propose CloudAR, a mobile AR framework utilizing the advantages of cloud and edge computing through recognition task offloading. We explore the design space of cloud-based AR exhaustively and optimize the offloading pipeline to minimize the time and energy consumption. We design an innovative tracking system for mobile devices which provides lightweight tracking in 6 degree of freedom (6DoF) and hides the offloading latency from users' perception. We also design a multi-object image retrieval pipeline that executes fast and accurate image recognition tasks on servers. In our evaluations, the mobile AR application built with the CloudAR framework runs at 30 frames per second (FPS) on average with precise tracking of only 1~2 pixel errors and image recognition of at least 97% accuracy. Our results also show that CloudAR outperforms one of the leading commercial AR framework in several performance metrics

    FEAFA: A Well-Annotated Dataset for Facial Expression Analysis and 3D Facial Animation

    Full text link
    Facial expression analysis based on machine learning requires large number of well-annotated data to reflect different changes in facial motion. Publicly available datasets truly help to accelerate research in this area by providing a benchmark resource, but all of these datasets, to the best of our knowledge, are limited to rough annotations for action units, including only their absence, presence, or a five-level intensity according to the Facial Action Coding System. To meet the need for videos labeled in great detail, we present a well-annotated dataset named FEAFA for Facial Expression Analysis and 3D Facial Animation. One hundred and twenty-two participants, including children, young adults and elderly people, were recorded in real-world conditions. In addition, 99,356 frames were manually labeled using Expression Quantitative Tool developed by us to quantify 9 symmetrical FACS action units, 10 asymmetrical (unilateral) FACS action units, 2 symmetrical FACS action descriptors and 2 asymmetrical FACS action descriptors, and each action unit or action descriptor is well-annotated with a floating point number between 0 and 1. To provide a baseline for use in future research, a benchmark for the regression of action unit values based on Convolutional Neural Networks are presented. We also demonstrate the potential of our FEAFA dataset for 3D facial animation. Almost all state-of-the-art algorithms for facial animation are achieved based on 3D face reconstruction. We hence propose a novel method that drives virtual characters only based on action unit value regression of the 2D video frames of source actors.Comment: 9 pages, 7 figure

    AIR: Anywhere Immersive Reality with User-Perspective Projection

    Full text link
    Projection-based augmented reality (AR) has much potential, but is limited in that it requires burdensome installations and prone to geometric distortions on display surface. To overcome these limitations, we propose AIR. It can be carried and placed anywhere to project AR using pan/tilting motors, while providing the user with distortion-free projection of a correct 3D view.Comment: Presented at EUROGRAPHICS 2017 as Short Pape

    A Virtual Environment with Multi-Robot Navigation, Analytics, and Decision Support for Critical Incident Investigation

    Full text link
    Accidents and attacks that involve chemical, biological, radiological/nuclear or explosive (CBRNE) substances are rare, but can be of high consequence. Since the investigation of such events is not anybody's routine work, a range of AI techniques can reduce investigators' cognitive load and support decision-making, including: planning the assessment of the scene; ongoing evaluation and updating of risks; control of autonomous vehicles for collecting images and sensor data; reviewing images/videos for items of interest; identification of anomalies; and retrieval of relevant documentation. Because of the rare and high-risk nature of these events, realistic simulations can support the development and evaluation of AI-based tools. We have developed realistic models of CBRNE scenarios and implemented an initial set of tools.Comment: 27th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Swede

    Dense Object Reconstruction from RGBD Images with Embedded Deep Shape Representations

    Full text link
    Most problems involving simultaneous localization and mapping can nowadays be solved using one of two fundamentally different approaches. The traditional approach is given by a least-squares objective, which minimizes many local photometric or geometric residuals over explicitly parametrized structure and camera parameters. Unmodeled effects violating the lambertian surface assumption or geometric invariances of individual residuals are encountered through statistical averaging or the addition of robust kernels and smoothness terms. Aiming at more accurate measurement models and the inclusion of higher-order shape priors, the community more recently shifted its attention to deep end-to-end models for solving geometric localization and mapping problems. However, at test-time, these feed-forward models ignore the more traditional geometric or photometric consistency terms, thus leading to a low ability to recover fine details and potentially complete failure in corner case scenarios. With an application to dense object modeling from RGBD images, our work aims at taking the best of both worlds by embedding modern higher-order object shape priors into classical iterative residual minimization objectives. We demonstrate a general ability to improve mapping accuracy with respect to each modality alone, and present a successful application to real data.Comment: 12 page

    Alignment of the Virtual Scene to the Tracking Space of a Mixed Reality Head-Mounted Display

    Full text link
    With the mounting global interest for optical see-through head-mounted displays (OST-HMDs) across medical, industrial and entertainment settings, many systems with different capabilities are rapidly entering the market. Despite such variety, they all require display calibration to create a proper mixed reality environment. With the aid of tracking systems, it is possible to register rendered graphics with tracked objects in the real world. We propose a calibration procedure to properly align the coordinate system of a 3D virtual scene that the user sees with that of the tracker. Our method takes a blackbox approach towards the HMD calibration, where the tracker's data is its input and the 3D coordinates of a virtual object in the observer's eye is the output; the objective is thus to find the 3D projection that aligns the virtual content with its real counterpart. In addition, a faster and more intuitive version of this calibration is introduced in which the user simultaneously aligns multiple points of a single virtual 3D object with its real counterpart; this reduces the number of required repetitions in the alignment from 20 to only 4, which leads to a much easier calibration task for the user. In this paper, both internal (HMD camera) and external tracking systems are studied. We perform experiments with Microsoft HoloLens, taking advantage of its self localization and spatial mapping capabilities to eliminate the requirement for line of sight from the HMD to the object or external tracker. The experimental results indicate an accuracy of up to 4 mm in the average reprojection error based on two separate evaluation methods. We further perform experiments with the internal tracking on the Epson Moverio BT-300 to demonstrate that the method can provide similar results with other HMDs.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Intelligent Approaches to interact with Machines using Hand Gesture Recognition in Natural way: A Survey

    Full text link
    Hand gestures recognition (HGR) is one of the main areas of research for the engineers, scientists and bioinformatics. HGR is the natural way of Human Machine interaction and today many researchers in the academia and industry are working on different application to make interactions more easy, natural and convenient without wearing any extra device. HGR can be applied from games control to vision enabled robot control, from virtual reality to smart home systems. In this paper we are discussing work done in the area of hand gesture recognition where focus is on the intelligent approaches including soft computing based methods like artificial neural network, fuzzy logic, genetic algorithms etc. The methods in the preprocessing of image for segmentation and hand image construction also taken into study. Most researchers used fingertips for hand detection in appearance based modeling. Finally the comparison of results given by different researchers is also presented

    Augmented reality usage for prototyping speed up

    Full text link
    The first part of the article describes our approach for solution of this problem by means of Augmented Reality. The merging of the real world model and digital objects allows streamline the work with the model and speed up the whole production phase significantly. The main advantage of augmented reality is the possibility of direct manipulation with the scene using a portable digital camera. Also adding digital objects into the scene could be done using identification markers placed on the surface of the model. Therefore it is not necessary to work with special input devices and lose the contact with the real world model. Adjustments are done directly on the model. The key problem of outlined solution is the ability of identification of an object within the camera picture and its replacement with the digital object. The second part of the article is focused especially on the identification of exact position and orientation of the marker within the picture. The identification marker is generalized into the triple of points which represents a general plane in space. There is discussed the space identification of these points and the description of representation of their position and orientation be means of transformation matrix. This matrix is used for rendering of the graphical objects (e. g. in OpenGL and Direct3D).Comment: Keywords: augmented reality, prototyping, pose estimation, transformation matri
    • …
    corecore