397,917 research outputs found

    Pornography and the First Amendment

    Get PDF
    The complexity among embedded systems has increased dramatically in recent years. During the same time has the capacity of the hardware grown to astonishing levels. These factors have contributed to that software has taken a leading role and time-consuming role in embedded system development.Compared with regular software development, embedded development is often more restrained by factors such as hardware performance and testing capability. A solution to some of these problem has been proposed and that is a concept called virtual platforms. By emulating the hardware in a software environment, it is possible to avoid some of the problems associated with embedded software development. For example is it possible to execute a system faster than in reality and to provide a more controllable testing environment. This thesis presents a case study of an application specific virtual platform. The platform is based on already existing embedded system that is located in an industrial control system.  The virtual platform is able to execute unmodified application code at a speed twice of the real system, without causing any software faults. The simulation can also be simulated at even higher speed if some accuracy losses are regarded as acceptable.The thesis presents some tools and methods that can be used to model hardware on a functional level in an software environment. The thesis also investigates the accuracy of the virtual platform by comparing it with measurements from the physical system. In this case are the measurements mainly focused of the data transactions in a controller area network bus (CAN)

    A formal framework for specification-based embedded real-time system engineering

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (v. 2, p. 517-545).The increasing size and complexity of modern software-intensive systems present novel challenges when engineering high-integrity artifacts within aggressive budgetary constraints. Among these challenges, ensuring confidence in the engineered system, through validation and verification activities, represents the high cost item on many projects. The expensive nature of engineering high-integrity systems using traditional approaches can be partly attributed to the lack of analysis facilities during the early phases of the lifecycle, causing the validation and verification activities to begin too late in the engineering lifecycle. Other challenges include the management of complexity, opportunities for reuse without compromising confidence, and the ability to trace system features across lifecycle phases. The use of models as a specification mechanism provides an approach to mitigate complexity through abstraction. Furthermore, if the specification approach has formal underpinnings, the use of models can be leveraged to automate engineering activities such as formal analysis and test case generation. The research presented in this thesis proposes an engineering framework which addresses the high cost of validation and verification activities through specification-based system engineering. More specifically, the framework provides an integrated approach to embedded real-time system engineering which incorporates specification, simulation, formal verification, and test-case generation. The framework aggregates the state-of-the-art in individual software engineering disciplines to provide an end-to-end approach to embedded real-time system engineering. The key aspects of the framework include: * A novel specification language, the Timed Abstract State Machine (TASM) language, which extends the theory of Abstract State Machines (ASM).(cont.) The TASM language is a literate formal specification language which can be applied and multiple levels of abstraction and which can express the three key aspects of embedded real-time systems - function, time, and resources. * Automated verification capabilities achieved through the integration of mature analysis engines, namely the UPPAAL tool suite and the SAT4J SAT solver. The verification capabilities provided by the framework include completeness and consistency verification, model checking, execution time analysis, and resource consumption analysis. * Bi-directional traceability of model features across levels of abstraction and lifecycle phases. Traceability is achieved syntactically through archetypical refinement types; each refinement type provides correctness criteria, which, if met, guarantee semantic integrity through the refinement. * Automated test case generation capabilities for unit testing, integration testing, and regression testing. Unit test cases are generated to achieve TASM specification coverage through the rule coverage criterion. Integration test case generation is achieved through the hierarchical composition of unit test cases. Regression test case generation is achieved by leveraging the bi-directional traceability of model features. The framework is implemented into an integrated tool suite, the TASM toolset, which incorporates the UPPAAL tool suite and the SAT4J SAT solver. The toolset and framework are evaluated through experimentation on three industrial case studies - an automated manufacturing system, a "drive-by-wire" system used at a major automotive manufacturer, and a scripting environment used on the International Space Station.by Martin Ouimet.Ph.D

    Banc de proves per a l'estudi de sistemes de control

    Get PDF
    Testing platform for the study of control systems The following final project consists in the study and elaboration of a testing platform for the study of control systems. We will have to build a real system to control that will allow us to take real-time empirical data if necessary for their characterization. Specifically, the system that has been designed by the project is a rocker prototype with an engine and a helix. The studied plant is based on a bar that has the freedom to rotate around a horizontal axis that describes a movement that is contained in the vertical plane. This is achieved thanks to the lifting force that generates the helix in a viscous fluid such as air. The helix is connected to a DC motor and both are embedded at one end of the moving bar. By varying the speed of rotation of the helix, it is possible to vary the force it generates and, consequently, the angle that forms the position of the bar relative to the vertical. You can measure the position or the angle with a potentiometer coupled to the axis of rotation that depending on the resistance that generates, the passage of the current will be related to a specific angle. Next, the integration of data and the control of the system is carried out in the simulation environment of the Labview program. In this, a Proportional Integral Derivative (PID) control is designed to be tuned and will allow control the motor's rotation speed and use the angle measurement to control the position of the system. As an interconnection platform between the system and the PC, an Arduino UNO microcontroller has been used with the extension of LINX Makerhub and a motor driver for the control of the actuator. A theoretical study of the real plant will be carried out to create a mathematical model that emulates the behavior of the real system. Once you have it, a simulated plant module is created in the programming environment with which you can tune in the controller. The values of the control variables obtained with the tuning of the control system based on the simulated and the real plant are compared

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts
    • …
    corecore