150 research outputs found

    Algorithms for the Maximum Independent Set Problem

    Get PDF
    This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of S2;j;kS_{2;j;k}-free graphs (thus generalizing the classical result for S1;2;kS_{1;2;k}-free graphs); + some subclasses of treektree_{k}-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of P7P_{7}-free graphs and S2;2;2S_{2;2;2}-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of S2;k;kS_{2;k;k}-free graphs and a subclass of S2;2;5S_{2;2;5}-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for P5P_{5}-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for P5P_{5}-free graphs, to give polynomial solutions for some subclasses of S2;2;2S_{2;2;2}-free graphs and treektree_{k}-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of Si;j;kS_{i;j;k}-free subcubic graphs

    Permutation classes

    Full text link
    This is a survey on permutation classes for the upcoming book Handbook of Enumerative Combinatorics

    Enumerative Combinatorics

    Get PDF
    Enumerative Combinatorics focusses on the exact and asymptotic counting of combinatorial objects. It is strongly connected to the probabilistic analysis of large combinatorial structures and has fruitful connections to several disciplines, including statistical physics, algebraic combinatorics, graph theory and computer science. This workshop brought together experts from all these various fields, including also computer algebra, with the goal of promoting cooperation and interaction among researchers with largely varying backgrounds

    Bibliographie

    Get PDF

    A parametric approach to hereditary classes

    Get PDF
    The “minimal class approach" consists of studying downwards-closed properties of hereditary graph classes (such as boundedness of a certain parameter within the class) by identifying the minimal obstructions to those properties. In this thesis, we look at various hereditary classes through this lens. In practice, this often amounts to analysing the structure of those classes by characterising boundedness of certain graph parameters within them. However, there is more to it than this: while adopting the minimal class viewpoint, we encounter a variety of interesting notions and problems { some more loosely related to the approach than others. The thesis compiles the author's work in the ensuing research directions

    On The Growth Of Permutation Classes

    Get PDF
    We study aspects of the enumeration of permutation classes, sets of permutations closed downwards under the subpermutation order. First, we consider monotone grid classes of permutations. We present procedures for calculating the generating function of any class whose matrix has dimensions m × 1 for some m, and of acyclic and unicyclic classes of gridded permutations. We show that almost all large permutations in a grid class have the same shape, and determine this limit shape. We prove that the growth rate of a grid class is given by the square of the spectral radius of an associated graph and deduce some facts relating to the set of grid class growth rates. In the process, we establish a new result concerning tours on graphs. We also prove a similar result relating the growth rate of a geometric grid class to the matching polynomial of a graph, and determine the effect of edge subdivision on the matching polynomial. We characterise the growth rates of geometric grid classes in terms of the spectral radii of trees. We then investigate the set of growth rates of permutation classes and establish a new upper bound on the value above which every real number is the growth rate of some permutation class. In the process, we prove new results concerning expansions of real numbers in non-integer bases in which the digits are drawn from sets of allowed values. Finally, we introduce a new enumeration technique, based on associating a graph with each permutation, and determine the generating functions for some previously unenumerated classes. We conclude by using this approach to provide an improved lower bound on the growth rate of the class of permutations avoiding the pattern 1324. In the process, we prove that, asymptotically, patterns in Ɓukasiewicz paths exhibit a concentrated Gaussian distribution
    • 

    corecore