40 research outputs found

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g−1)/2−1γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ≈27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    Asymptotic enumeration of non-crossing partitions on surfaces

    Get PDF
    We generalize the notion of non-crossing partition on a disk to general surfaces with boundary. For this, we consider a surface S and introduce the number CS(n) of noncrossing partitions of a set of n points laying on the boundary of SPostprint (author's final draft

    Generating functions of bipartite maps on orientable surfaces (extended abstract)

    Get PDF
    International audienceWe compute, for each genus gg ≥ 0, the generating function LLgg ≡ LLgg(tt;pp1,pp2,...) of (labelled) bipartite maps on the orientable surface of genus gg, with control on all face degrees. We exhibit an explicit change of variables such that for each gg, LLgg is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function LLgg of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result strengthens recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d’enfants. Our proofs borrow some ideas from Eynard’s “topological recursion” that he applied in particular to even-faced maps (unconventionally called “bipartite maps” in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.Nous calculons, pour chaque genre gg ≥ 0, la sĂ©rie gĂ©nĂ©ratrice LLgg ≡ LLgg(tt;pp1,pp2,...) des cartes bipartites (Ă©tiquetĂ©es) sur la surface orientable de genre gg, avec contrĂŽle des degrĂ©s des faces. On exhibe un changement de variable explicite tel que pour tout gg, LLgg est une fonction rationnelle des nouvelles variables, calculable par une rĂ©currence explicite sur le genre. La mĂȘme chose est vraie de la sĂ©rie gĂ©nĂ©ratrice LLgg des cartes biparties enracinĂ©es. La forme du rĂ©sultat est similaire aux formules de Goulden/Jackson/Vakil et Goulden/Guay-Paquet/Novak pour les sĂ©ries gĂ©nĂ©ratrices de nombres de Hurwitz classiques et monotones, respectivement, ce qui suggĂšre des liens plus forts entre ces modĂšles. Notre rĂ©sultat renforce des rĂ©sultats rĂ©cents de Kazarian et Zograf, qui Ă©tudient le cas oĂč le nombre de faces est bornĂ©, dans le formalisme Ă©quivalent des dessins d’enfants. Nos dĂ©monstrations utilisent deux idĂ©es de la “rĂ©currence topologique” d’Eynard, qu’il a appliquĂ©e notamment aux cartes paires (appelĂ©es de maniĂšre non-standard “cartes biparties” dans son travail). Cela dit, ce papier ne requiert pas de connaissance prĂ©liminaire sur ce sujet, et nos dĂ©monstrations (sans analyse complexe) sont Ă©crites dans le language des sĂ©ries formelles

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version
    corecore